Title: UNIDADES DE MEDIDA
1UNIDADES DE MEDIDA
- MAGNITUDES- UNIDADES- FACTORES DE CONVERSION
- POR JMRS
2Magnitudes y unidades
- Llamamos magnitud a cualquier característica de
la materia que se puede expresar con un numero y
una unidad de forma inequívoca. - Medir una magnitud es compararla con una cantidad
de su misma naturaleza, que llamamos unidad, para
ver cuantas veces la contiene. - La unidad
- Aunque se puede utilizar cualquier magnitud como
unidad, esta debe de ser - - Constante.- Ser siempre la misma con
independencia de donde se encuentre. - - Universal.- Que puede ser utilizada por
cualquiera. - - Fácil de reproducir.- Que pueda ser duplicada
de forma sencilla.
3Sistema Internacional de Unidades
- Consideramos magnitudes fundamentales aquellas
que no dependen de ninguna otra magnitud y que,
en principio se pueden determinar mediante una
medida directa. - magnitudes derivadas son aquellas que proceden de
las fundamentales y que se pueden determinar a
partir de ellas utilizando las expresiones
adecuadas. - En 1960 se estableció el sistema Internacional de
Unidades (SI). - Que establece siete magnitudes fundamentales.
- Las magnitudes fundamentales del SI son
LONGITUD metro m
TEMPERATURA Kelvin K
MASA Kilogramo kg
Cant. de Sustancia Mol mol
TIEMPO segundo s
Int. de Corriente Amperio A
Int. Luminosa Candela cd
4DEFINICIONES-I
101000.000
- Longitud (metro) m.- Es la distancia recorrida
por la luz en el vacio en un tiempo de1/299 792
458 segundos. - Definición primaria.- Diezmillonésima parte del
cuadrante meridiano terrestre. - Masa (Kilogramo) kg.- Es la masa de un cilindro
de platino-iridio (90,10) que se conserva en el
Museo de Pesas y Medidas de Sévres. - Tiempo ( segundo) s.- Es la duración de 9 192 631
770 periodos de la radiación correspondiente a la
transición entre los dos niveles hiperfinos del
estado fundamental del átomo de cesio-133. - Temperatura ( Kelvin) K.- unidad de temperatura
termodinámica, es la fracción 1/273,16 de la
temperatura termodinámica del punto triple del
agua (0,06 Atm. y 0,01ºC)
5DEFINICIONES-II
- Cantidad de sustancia (mol) mol.- El mol es la
cantidad de sustancia de un sistema que contiene
tantas entidades elementales como átomos hay en
0,012 kg de carbono-12. - Intensidad de corriente (Amperio)
A.- El amperio es la intensidad de una corriente
constante que, circula por dos conductores
paralelos, rectilíneos, de longitud infinita, de
sección circular despreciable y que colocados a
una distancia de un metro el uno del otro en el
vacío, producen entre estos dos conductores una
fuerza igual a 2 x10-7 newton por metro de
longitud.
- Intensidad luminosa (Candela) cd.- La candela es
la intensidad luminosa, en una dirección dada, de
una fuente que emite una radiación monocromática
de frecuencia 540 x 1012 hercios y cuya
intensidad radiante, en esta dirección, es 1/683
vatios por estereorradián (unidad de ángulo
sólido, 1sr ang. Sup esf. de rxr).
6Magnitudes derivadas
- Las magnitudes derivadas del SI
SUPERFICIE S m2
VOLUMEN V m3
1 m2
1 m3
DENSIDAD d kg/m3
VELOCIDAD v m/s
ACELERACION a m/s2
Si recorre 2m. en 4 s. su velocidad será 2/4
0,5m./s.
7Magnitudes derivadas
- Las magnitudes derivadas del SI
Newton (N) Se define como la fuerza necesaria
para proporcionar una aceleración de 1 m/s2 a un
objeto de 1 kg de masa.
SUPERFICIE S m2
VOLUMEN V m3
Pascal (Pa) Se define como la presión que ejerce
una fuerza de 1 newton sobre una superficie de 1
m2 normal a la misma.
DENSIDAD d kg/m3
VELOCIDAD v m/s
Julio (J) Se define como el trabajo realizado
cuando una fuerza de 1 newton desplaza su punto
de aplicación 1 metro. Es una unidad muy pequeña,
se suele utilizar el Kw/h 1Kw/h3,6106J
ACELERACION a m/s2
FUERZA F N (newton)
El móvil pasa de recorrer 2 m en 4 s V 0,5m/s
PRESION P Pa (pascal)
A hacerlo en 1 segundo, v2m/s a 1,5m/s2
ENERGIA E J (julio)
8Otras unidades de energia
- caloría.- Se define la caloría como la cantidad
de energia calorífica necesaria para elevar la
temperatura de un gramo de agua destilada de
14,5ºC a 15,5ºC a una presión estándar de una
atmósfera 1 kcal 4,186 103 J. - Kilovatio/hora.-Equivale a la energía
desarrollada por una potencia de un kilovatio
(kW) durante una hora, 1
KW/h 3,6106 J 1,359CV. - Caballo de vapor (CV), unidad de potencia.- es la
potencia necesaria para elevar un peso de 75 kg a
1m de altura en 1s. 1CV
0,98632 HP ? 736W. - tec (tonelada equivalente de carbón) es la
energía liberada por la combustión de 1 tonelada
de carbón (hulla) 1 tec 2,93
1010 J. - tep (tonelada equivalente de petróleo) es la
energía liberada por la combustión de 1 tonelada
de crudo de petróleo. 1 tep 4,187
1010 J.
9Notación científica
- La notación científica, consiste en escribir las
cantidades con una cifra entera seguida o no de
decimales (dígitos significativos) y la potencia
de diez correspondiente a ? 10c. Para ello se
utiliza el sistema de coma flotante, donde - -a .- es un numero mayor o igual que 1 y menor
que 10, (mantisa o significando). - -c.- es un numero entero, (potencia) puede ser
negativo o positivo. - Para expresar un número en notación científica
debe expresarse en forma tal que contenga un
dígito (el más significativo) en el lugar de las
unidades, todos los demás dígitos irán entonces
después del separador decimal multiplicado por el
exponente de 10 respectivo. - Ej 238 294 360 000 2,382 9436 ? 1011
- 0,000 312 459 3,124 59 ? 10-4.
10OPERACIONES CON NOTACIÓN CIENTÍFICA-I
- Suma y resta.- Siempre que las potencias de 10
sean las mismas, se debe sumar las mantisas,
dejando la potencia de 10 con el mismo grado, - Ejemplo 1 ? 104 3 ? 104
- en el caso de que no tenga el mismo exponente,
debe convertirse la mantisa multiplicándola o
dividiéndola por 10 tantas veces como sea
necesario, para obtener el mismo exponente. - Ejemplo 2 ? 104 3 ? 105
- Para sumar y restar dos números , o mas, debemos
tener el mismo exponente en las potencias de base
diez, Se toma como factor común el mayor y
movemos la coma flotante en los menores, hasta
igualar todos los exponentes - 2 ? 104 3 ? 105 - 6 ? 103
- (en este caso tomamos el exponente 5 como
referencia) - 0,2 ? 105 3 ? 105 - 0,06 ? 105
- (0,23-0,06)?105
4 ? 104
(13)?104
3,2 ? 105
0,2 ? 105 3 ? 105
3,14 ? 105
11OPERACIONES CON NOTACIÓN CIENTÍFICA-II
- Multiplicación.- Para multiplicar cantidades
escritas en notación científica, se multiplican
los números decimales o enteros de las mantisas y
se suman los exponentes con la misma base. - Ejemplo (3 ? 105) x ( 4 ? 103)
- División.- Para dividir cantidades escritas en
notación científica se dividen las partes enteras
o decimales de las mantisas y se restan los
exponentes con la misma base - Ejemplo (4 ? 1012)/(2 ? 105)
- Potenciación.- Se calcula la potencia
correspondiente de las mantisas y se multiplica
el exponente de base 10 por la potencia a la cual
se eleva - Ejemplo (3 ? 106)2
- Radicación.- Se debe extraer la raíz
correspondiente de la mantisa y dividir el
exponente por el índice de la raíz - Ejemplo 9 ? 1026
1,2 ? 109
(3x4) ? (10 (53))
12 ?10 8
4/2 .10 (12-5)
2 ? 107
32 ? 10 (6 x2)
9 ? 1012
3 ? 1013
9 . 10 (26/2)
12RESUMEN NOTACIÓN UNIDADES-I
- El nombre completo de las unidades se escribe
siempre en minúsculas. - Por contra el símbolo de la unidad empieza en
mayúscula si la unidad hace referencia a un
nombre propio como ocurre con los pascales (Pa) o
los kelvin (K). - Los símbolos se han adoptado con un criterio
economicista tratando de acortarlos lo más
posible siempre que no genere ambigüedad. Por
tanto - Nunca escriba un punto al final del símbolo de
una unidad, salvo que sea el punto ortográfico de
final de párrafo o frase. - Nunca use sg ni seg para referirse a los
segundos. - Nunca use kgr ni Kgs para referirse a los
kilogramos. - Nunca use el símbolo gr para referirse al
submúltiplo gramo. - Nunca use cc para referirse a centímetros
cúbicos. - Los símbolos de las unidades se escriben en
caracteres romanos y redondos (no cursivos) con
la excepción del ohmio (?). - Cuando una unidad derivada sea cociente de otras
dos, se puede utilizar /, ? o potencias
negativas para evitar el denominador. - m/s m m?s-1.
- s
- No se debe utilizar mas de una barra en una misma
línea, se usaran paréntesis o potencias negativas.
13RESUMEN NOTACIÓN UNIDADES-II
- Las reglas de formación de símbolos de las
unidades del SISTEMA INTERNACIONAL han sido
adoptadas como propias de la lengua española por
la REAL ACADEMIA ESPAÑOLA en su última Ortografía
de la Lengua Española. - Los nombres de unidades derivados del nombre
propio de científicos deben respetar su
ortografía original, aunque siempre se escribirán
en minúscula. No obstante se pueden usar las
denominaciones castellanizadas que estén
reconocidas por la REAL ACADEMIA ESPAÑOLA. - Los plurales de las unidades se forman añadiendo
el morfema s salvo que el nombre de la unidad
acabe en s,x o z en cuyo caso permanecerá
invariable. - Los símbolos de las unidades, como tales, son
formas inalterables. Nunca los pluralice. No
escriba nunca 75 cms escriba 75 cm. - Los símbolos y nombre de unidades no se mezclan
ni se usan con operaciones matemáticas.
14Múltiplos y submúltiplos
15REGLAS DE USO Y ESCRITURA DE MÚLTIPLOS Y
SUBMÚLTIPLOS
- Los símbolos de los submúltiplos se escriben en
general en minúsculas. - Los símbolos de los múltiplos a partir de kilo
(k)en mayúsculas. - Las excepciones a esta regla son
- el kilo cuyo símbolo se escribe siempre en
minúscula para diferenciarlo del kelvin - y el micro cuyo símbolo se escribe en carácter
griego (? ). - El múltiplo o submúltiplo siempre antecede a la
unidad que modifica, y lo hace sin espacio ni
símbolo de otra clase intermedio. - La combinación múltiplo-unidad define una nueva
unidad que como tal puede estar afectada por
exponentes negativos o positivos. De esta forma
km2 significa (km) 2 106 m2 y nunca k(m2) 1
000m2. - No se admite la yuxtaposición de prefijos. Nunca
escriba mmg sino g. - Por razones históricas la unidad de masa en el
SISTEMA INTERNACIONAL (el kg) contiene un
prefijo. Cuando se usan múltiplos y submúltiplos
ha de considerarse que ya contiene uno en su
nombre. De esta forma no escriba nunca mkg sino
g, ni ?kg sino mg.
16CAMBIO DE UNIDADES FACTORES DE CONVERSIÓN-I
- Siempre que realizamos cálculos, debemos de
homogenizar las unidades utilizadas. - Para realizar la transformación utilizamos los
factores de conversión. - Llamamos factor de conversión a la relación de
equivalencia entre dos unidades de la misma
magnitud, es decir, un cociente que nos indica
los valores numéricos de equivalencia entre ambas
unidades. - Multiplicar una cantidad por un factor de
conversión es como multiplicarla por 1, pues
tanto el numerador como el denominador de la
fracción tienen el mismo valor. - 103m 1 Km 3,6?103s 1 h.
17CAMBIO DE UNIDADES FACTORES DE CONVERSIÓN-II-
PROCEDIMIENTO.I
- Para pasar de 5 km a m.
- 1º) Anotar la cantidad que se quiere cambiar.
- 5 km.
- 2º) Escribir a su lado una fracción que contenga
esta unidad y la unidad a la cual la queremos
convertir. Debe escribirse de forma que
simplifique la unidad de partida (la que
multiplica, divide y la que divide, multiplica). - 5 km . m/km
- 3º) Al lado de cada una de estas unidades se
añade su equivalencia con la otra, en notación
científica. - 5 km .103 m/1 km
- 4º) Se simplifica la unidad inicial y se expresa
el resultado final. - 5 km .103 m/ 1 km 5. 103 m.
- Nota En el caso de unidades derivadas se tiene
que utilizar un factor para cada unidad que se
quiere cambiar.
18CAMBIO DE UNIDADES FACTORES DE CONVERSIÓN-II-
PROCEDIMIENTO. II
- En el caso de unidades derivadas
- Por ejemplo pasar 50 Km/h a m/s
- 1º) Anotar la cantidad.
- 2º) Escribir las fracciones con estas unidades y
a las cuales queremos convertirlas y añadimos el
valor de la equivalencia. - 3º) Simplificamos.
- 4º) Operamos.
50 km
103 m
1 h
50 m/ 3,6 s
13,9 m/s
h
3,6.103 s
1 km
19CAMBIO DE UNIDADES FACTORES DE CONVERSIÓN-II-
PROCEDIMIENTO. II
- En el caso de unidades derivadas, densidad
- Por ejemplo pasar 130 g/cm3 a kg/m3
- 1º) Anotar la cantidad.
- 2º) Escribir las fracciones con estas unidades y
a las cuales queremos convertirlas y añadimos el
valor de la equivalencia. - 3º) Simplificamos.
- 4º) Operamos.
1,30?102 g
1 kg
106 cm3
102.106/103 105
cm3
1 m3
103g
1,30?105 kg/ m3
130 000 kg/m3
20CAMBIO DE UNIDADES FACTORES DE CONVERSIÓN-II-
PROCEDIMIENTO. III
- En el caso de unidades derivadas, consumo de
combustible - Por ejemplo pasar 15km/L a millas/galón
(Américano) - 1galon 3,7854 L 1 mi 1,609344 Km
- 1L 0,2642 gal US 1km 0,6214 mi
1,510 km
6,21410-1 mi
L
L
km
2,64210-1gal
1,5 6,214 / 2,642 10-1
35,28 mi/gal US
1º) Anotar la cantidad. 2º) Escribir las
fracciones con estas unidades y a las cuales
queremos convertirlas y añadimos el valor de la
equivalencia. 3º) Simplificamos. 4º) Operamos.
CONVERSOR DE UNIDADES
21TABLAS DE UNIDADES
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27FIN
- UNIDADES DE MEDIDA Y FACTORES DE CONVERSIÓN