Djemel Ziou - PowerPoint PPT Presentation

About This Presentation
Title:

Djemel Ziou

Description:

Learning of Data Collections in High-dimensional Spaces Without Supervision Djemel Ziou NSERC/Bell Canada Chair in personal imaging Computer Science dept. – PowerPoint PPT presentation

Number of Views:144
Avg rating:3.0/5.0
Slides: 35
Provided by: sab9154
Category:

less

Transcript and Presenter's Notes

Title: Djemel Ziou


1
Learning of Data Collections in High-dimensional
Spaces Without Supervision
  • Djemel Ziou
  • NSERC/Bell Canada Chair in personal imaging
    Computer Science dept.
  • Université de Sherbrooke
  • Quebec, Canada

1
2
Content
  • Visual collection management
  • Machine learning
  • Image segmentation
  • Content based image suggestion

3
Visual collection management
4
Motivations
NSF 2007, B. Efron 2002.
5
Reactive Access to Collections
  • Text-based image retrieval
  • Text keywords extracted from Web pages
    containing the image, figure captions,

Short term need User queries an information
retrieval system
  • Content-based image retrieval
  • Visual appearance color, shape, texture, regions
    of interest,
  • Limitations
  • Query, features, similarity, indexing,

5
6
Proactive Access To Collections
Predict the buyers needs
Suggestion
Suggestion rules
  • Collaboration Users conformity to groups ?
    Opinions of other users
  • 2. Content Conformity to himself
  • Items with same tags (keywords)

6
7
Machine Learning
7
8
Introduction
  • Representation of stimulus

9
Introduction
  • Data
  • Generative learning

Under certain assumptions (structural, MAP)
  • Discriminative learning

Unlike generative learning, 1) provides no
information about x (
) 2) Discriminative learning cannot be used
with unlabelled data (C must be observed).
10
Discriminative Learning Bayesian Logistic
Regression Ksantini, Ziou, Colin, Dubeau. IEEE
Trans. On PAMI, 2008
Maximizing the conditional Log-Likelihood.
where
There are several drawbacks (high-dimension,
separability, )
Bayesian formulation
11
Variational approximation and Jensens inequality
lead to
12
Generative learning case of finite mixture of
pdfs
  • Finite mixture model.

Problems pdf, estimation, model selection,
Which Pdf?
Gaussian, Gamma, , same or different pdfs for
populations.
Mixture of different Pdfs for SAR images El Zaart
and Ziou, Int J. Remote Sensing 2007

13
The Generalized Dirichlet Distribution
Generalized Dirichlet distribution (GDD)
14
Multi-dimensionality is Omnipresent
  • Multidimensional data
  • Image Descriptors 128 000 features (128 Sift
    features x 1000 interest points).
  • Faces 128x128 pixels 16384 features/face
  • Text terms in a corpus 10 000

14
15
High-Dimensional data
Bouguila and Ziou. IEEE Trans. On PAMI, 2007
Boutemedjet, Bouguila and Ziou. IEEE Trans. On
PAMI, 2009
If is GDD (
)
If d1
for d2D
Each is a Beta
16
Feature Selection
  • Mixture model before and after transformation

16
17
Feature Selection Model
Boutemedjet, Bouguila and Ziou. IEEE Trans. On
PAMI, 2009
  • Relevance Criterion marginal independence of Xl
    from the class label Z
  • Label Xl with hidden Bernoulli variable ?l, such
    that ?l0 when Xl ?l,
  • General definition ?l mixture of K ?kl
  • e.g. distribution of background in object
    images.
  • Label Xl in the mixture ?l by hidden multinomial
    variable
  • Approximation
  • New mixture model Generalized Dirichlet (GD) with
    selection of independent features

17
18
Unsupervised Learning using the MML Principle
Bouguila and Ziou. IEEE Trans. On TKDE, 2007
Paradigm
Send
Encode
Decode
What is the minimum message length?
  • is the number of parameters being
    estimated and equal to M (2D1).
  • is the prior probability.
  • is the Fisher information
    (determinant of the Hessian matrix).
  • Problems ? And ?

19
Unsupervised Learning MML
Boutemedjet, Bouguila and Ziou. IEEE Trans. On
PAMI, 2009
  • Fisher Information
  • E.g.
  • Prior distribution
  • E.g.
  • Message Length of the data set

19
20
Optimization of MML
  • Expectation Maximization (EM) algorithm
  • E-step expected posterior probabilities
  • M-step

2x2 matrix
21
Object image categorization
  • Goal Identify categories and irrelevant
    features
  • Challenge Intra-class variability inter-class
    similarity
  • Existing Supervised, K-NN with Euclidian
    distance
  • Collection 2688 images, 8 classes
  • Features
  • Scale Invariant Feature Transform (SIFT)
    1.5.106
  • descriptors 128-D (2 GB)
  • Visual vocabulary 700 visual words
  • Probabilistic Latent Semantic Indexing (pLSI)
  • P(zI) hidden aspects defined on simplex ?
  • Non-Euclidian

Challenging problem in computer vision
22
Results
Feature Selection improves the accuracy of image
categorization
22
23
Image segmentation and object tracking
M.S. Allili and Ziou, Int. J. of Computer
Mathematics, 2007.M.S. Allili and Ziou, J.
Neurocomputing, 2008.
24
Problem formulation of segmentation
Active contour based approach
Variational formulation
Final contour
Initial Contour
25
Proposed approach
Statistical Model selection
Contrast estimation

Energy functional
Euler-Lagrange PDE
26
Topology change (Level sets)
Experimental results
27
Object tracking in video
28
CBIS as a Model Selection Problem
Boutemdjet and Ziou, IEEE Trans. on multimedia,
2008.
29
Suggestion Criteria
  • Data
  • Users Uu1,u2,,UNu
  • Contexts Ee1,e2,,eNe
  • Images X x1,x2,,xNx
  • Ratings of user on images
  • D(u(i),e(i),x(i),r(i)),i1,,N,
  • Data modeling principle
  • Similar users prefer visually and semantically
    similar products
  • Suggestion consumers need highly rated and
    less redundant products

29
30
Data model p(u,e,x,r)
  • Rating model data ? Each Quadruplet (u,e,v,x)
    is a random vector
  • Discover user/image classes (z,c) and Label
    (u,e,v,x) with 2 hidden variables z user class,
    c image class
  • All variables except x are discrete multinomial
    distributions, xGD
  • Parameters
  • Diversity Penalize predicted ratings for
    consumed images Xue
  • Consumed images become irrelevant
    Nue(u,e,xtue,r-),t1,..,Nue
  • Update T from Nue
  • New data are handled.

30
31
Algorithm
31
32
Results Mean Absolute Error (MAE)
  • PCC Pearson Correlation Coefficients (P. Resnick
    et al., CSCW 1994)
  • Aspect Model (T. Hofmann, ACM TOIS 2004)
  • Flexible Mixture Model (L. Si R. Jin, ICML
    2003)
  • User Rating Profile (B. Marlin, NIPS 2004)
  • V-FMM No contextual information, ESingleton
  • V-GD-FMM No Feature Selection

PCC Aspect FMM URP V-FMM V-GD-FMM I-VCC D-VCC
Avg. MAE 1.327 1.201 1.145 1.116 0.890 0.754 0.712 0.645
Std. Deviation 0.040 0.051 0.036 0.042 0.038 0.027 0.022 0.014
Improvement () 0.00 9.49 13.71 15.90 32.94 43.18 51.62 55.84
Feature Selection improves the rating prediction
accuracy
32
33
  • Thank you

33
34
References
  • M. S. Allili, D. Ziou. Object tracking in videos
    using adaptive mixture models and active
    contours. Neurocomputing 7, pp. 2001-2011, 2008.
  • M. S. Allili, D. Ziou Automatic colour-texture
    image segmentation using active contours. Int. J.
    Comput. Math. 84(9) 1325-1338, 2007.
  • S. Boutemedjet, Djemel Ziou. A Graphical Model
    for Context-Aware Visual Content Recommendation.
    IEEE Trans. on Multimedia 10, pp. 52-62, 2008.
  • S. Boutemedjet, N. Bouguila, and D. Ziou (In
    press). A Hybrid Feature Extraction Selection
    Approach for High-Dimensional Non-Gaussian Data
    Clustering. IEEE Trans. on Pattern Analysis and
    Machine Intelligence, 2009.
  • N. Bouguila and D. Ziou High-Dimensional
    Unsupervised Selection and Estimation of a Finite
    Generalized Dirichlet Mixture Model Based on
    Minimum Message Length. IEEE Trans. on Pattern
    Analysis and Machine Intelligence, 2007.
  • R. Ksantini, D. Ziou, B. Colin, F. Dubeau.
    Weighted Pseudometric Discriminatory Power
    Improvement Using a Bayesian Logistic Regression
    Model Based on a Variational Method. IEEE Trans.
    Pattern Anal. Mach. Intell. 30(2) 253-266, 2008.
  • D. Ziou, T. Hamri, S. Boutemedjet. A hybrid
    probabilistic framework for content-based image
    retrieval with feature weighting. Pattern
    Recognition 42(7) 1511-1519, 2009.
  • M. L. Kherfi, D. Ziou. Relevance feedback for
    CBIR a new approach based on probabilistic
    feature weighting with positive and negative
    examples. IEEE Trans. on Image Processing 15(4)
    1017-1030 2006.
  • M.-F. Auclair-Fortier, D. Ziou. A Global Approach
    for Solving Evolutive Heat Transfer for Image
    Denoising and Inpainting. IEEE Trans. Image
    Processing, 152558-2574, 2006.
  • A. F. El Ouafdi, D. Ziou, and H. Krim. A smart
    stochastic approach for manifolds smoothing.
    Comput. Graphic Forum 27, pp. 1357-1364, 2008.

34
Write a Comment
User Comments (0)
About PowerShow.com