Mthodes de dcomposition - PowerPoint PPT Presentation

1 / 109
About This Presentation
Title:

Mthodes de dcomposition

Description:

sur la valeur optimal. Convergence de la proc dure de Dantzig-Wolfe. Exemple num rique ... Bornes sur la valeur optimale de (P) Convergence. Advantages ... – PowerPoint PPT presentation

Number of Views:27
Avg rating:3.0/5.0
Slides: 110
Provided by: ferl1
Category:

less

Transcript and Presenter's Notes

Title: Mthodes de dcomposition


1
  • Méthodes de décomposition

2
  • Overview of the main decomposition methods
    used
  • To solve large scale problem
  • To take advantage of structures
  • embedded in the problem

3
Outline
  • Problem structures
  • Column generation
  • (Dantzig Wolfe decomposition)
  • Constraint generation
  • (Benders decomposition)
  • Lagrangean relaxation
  • Lagrangean decomposition

4
Problem types
  • Min f (x, y)
  • Subject to
  • F (x, y) 0
  • x e X, y e Y
  • x nice variables
  • y annoying variables
  • Constraint generation
  • (Benders Decomposition)
  • Min f (x)
  • Subject to
  • x e X1
  • x e X2
  • X1 nice constraints
  • X2 annoying constraints
  • Column generation
  • (Dantzig Wolfe Decomposition)
  • Lagrangean relaxation

5

6
Problèmes linéaires

7
Problème

8
Problème équivalent

9
Approche de résolution

10

11

12

13

14

15

16

17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
Illustration graphique

23
  • X

24

25

26

27

28

29

30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
Initialisation de la procédure

37

38

39

40

41

42

43
(No Transcript)
44
(No Transcript)
45
Existence de bornes inférieure et supérieure sur
la valeur optimal

46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
Convergence de la procédure de Dantzig-Wolfe

51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
Exemple numérique

59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62

63
(No Transcript)
64

65
(No Transcript)
66
(No Transcript)
67
Cas où ? nest pas borné

68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77


78


79

80
Extension au cas non-linéaire

81

82

83
(No Transcript)
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
(No Transcript)
94
(No Transcript)
95
(No Transcript)
96
(No Transcript)
97
Bornes sur la valeur optimale de (P)

98
(No Transcript)
99

100

101

102

103
Convergence

104
Advantages
  • Solve a sequence of restricted (smaller) problems
  • Mechanism to verify if the optimal solution of
    restricted problem is optimal for the original
    problem solving a problem specified with the
    nice constraints
  • Same mechanism generates additional variables to
    modify the restricted problem and to get closer
    to the original one

105
Advantage of the approach
  • PRIMAL METHOD
  • for any restricted problem
  • the optimal solution ?i, ieG
  • x ? ieG ?i xi feasible for the original
    problem

106
(No Transcript)
107
(No Transcript)
108
(No Transcript)
109
References
  • M. S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear
    Programming and Network Flows, Third Edition,
    Wiley (2005).
  • G.B. Dantzig, P. Wolfe, Decomposition Principle
    for Linear Programs, Operations Research 8
    (1960), 101-111.
  • A.M. Geoffrion, Elements of Large Scale
    Mathematical Programming, Part I Concepts Part
    II Synthesis of Algorithms and
    Bibliography,Management Science 16 (1970),
    652-691.
Write a Comment
User Comments (0)
About PowerShow.com