Title: Teoria a molti-corpi della
1Teoria a molti-corpi della materia
nucleare
2- Lezione IV
- Implicazioni per le stelle di neutroni
- 2. Cenni sulla fase superfluida
- 3. Indicazioni sulla EoS da dati osservativi e da
- collisioni fra ioni pesanti
- 4. Confronto con EoS fenomenologiche
- 5. Formulazione relativistica, l approssimazione
- Dirac-Brueckner
- 6. Transizione alla fase di quark, modelli per la
fase - deconfinata
3Rappresentazione schematica di una stella
massiva in condizioni pre-collasso
4SN 1987a
Exploding
Before explosion
5La nuvola espulsa e il rimanente oggetto
compatto
6Abbondanza di oggetti compatti !
7Visione schematica di una pulsar e del suo faro
8faro in direzione della terra
faro fuori direzione
9Distribuzione delle pulsars in cielo rispetto al
piano galattico
10A section (schematic)
of a neutron star
La parte piu interna di una Stella di
neutroni convenzionale e dominata da
materia nucleare omogenea e fortemente
asimmetrica Piu avanti ci occuperemo della
crosta
11The baryonic Equations of State
HHJ Astrophys. J. 525, L45 (1999
BBG PRC 69 , 018801 (2004) AP PRC
58, 1804 (1998)
12Phenomenolocical area from Danielewicz et
al., Science 298 (2002) 1592
Nonostante le incertezze dell analisi sembra
esserci una ben definita discriminazione tra le
diverse EOS
Kh. Gad Nucl. Phys. 747 (2005) 655
13Composition of asymmetric and beta-stable matter
- Composition of stellar matter
i) Chemical equilibrium among the different
baryonic species ii) Charge neutrality iii)
Baryon number conservation
14Symmetry energy as a function of
density Proton fraction as a function of
density in neutron stars
AP becomes superluminal at high density and has
no DU
15(No Transcript)
16Hyperon influence on hadronic EOS
17Composition of asymmetric and beta-stable
matterincluding hyperons
extended to hyperons
- Composition of stellar matter
i) Chemical equilibrium among the different
baryonic species ii) Charge neutrality iii)
Baryon number conservation
18Including hyperons inside the neutron stars
- Shift of the hyperon onset points
- down to 2-3 times saturation density
- At high densities N and Y present almost in the
same percentage.
19Mass-Radius relation
- Inclusion of Y decreases the maximum mass value
20H.J. Schulze et al., PRC 73, 058801 (2006)
21(No Transcript)
22(No Transcript)
23Including Quark matter
- Since we have no theory which describes both
confined and - deconfined phases, we uses two separate EOS for
baryon - and quark matter and assumes a first order phase
transition. -
- Baryon EOS. BBG
- AP
- HHJ
- Quark matter EOS. MIT bag model
-
Nambu-Jona Lasinio -
Coloror dielectric model
24The three baryon EOS for beta-stable neutron star
matter in the pressure-chemical potential plane.
25MIT bag model. Naive version
26PRC , 025802 (2002)
27Materia nucleare simmetrica
Al decrescere del valore della bag constant la
massa massima delle NS tende a crescere. Tuttavia
B non puo essere troppo piccolo altrimenti lo
stato fondamentale della materia nucleare all
densita di saturazione e nella fase
deconfinata !
28Density dependent bag constant
29 Density profiles of different phases MIT bag
model
30Evidence for large mass ?
Nice et al. ApJ 634, 1242 (2005)
PSR J07511807 M 2.1
/- 0.2 Ozel, astro-ph /0605106
EXO 0748 676
M gt 1.8 Quaintrell et al.
AA 401, 313 (2003) NS in VelaX-1
1.8 lt M lt 2
31Alford et al. , ApJ 629 (2005) 969
Non-perturbative corrections Strange quark
mass
corresponds to the usual MIT bag model
Freedman McLerran 1978
32Maximum mass depends mainly on the
parametrization and not on the transition point
33BBG
HHJ
34The problem of nuclear matter ground state is
solved. But, in any case one needs an
additional repulsion in quark matter at high
density
35NJL Model
The model is questionable at high density where
the cutoff can be comparable with the Fermi
momentum
36Including Color Superconductivity in
NJL Steiner,Reddy and Prakash 2002 Buballa
Oertel 2002. Application to NS CT GSI ,
PLB 562,,153 (2003)
37Mass radius relationship Maximum mass
38NJL , the quark current masses as a function of
density
39Equivalence between NJL and MIT bag model above
chiral transition (two flavours). For NJL B
170 MeV
The pressure is zero at zero density ! (no
confinement)
40The CDM model the equation of state for
symmetric matter C. Maieron et al., PRD 70,
043010 (2004)
The model is confining
41The CDM model maximum mass of neutron star
42The effective Bag constsnt in the CDM model
43Some (tentative) conclusions
- The transition to quark matter in NS looks
likely, - but the amount of quark matter depends on the
quak - matter model.
- If the observed high NS masses (about 2 solar
mass) - have to be reproduced, additional repulsion is
needed - with respect to naive quark models .
- The situation resembles the one at the
beginning of NS - physics with the TOV solution for the free
neutron gas - The confirmation of a mass definitely larger than
2 - would be a major breakthrough
3. Further constraints can come from other
observational data (cooling, glitches .)
44Comparison between phenomenological forces
and microscopic calculations (BBG) at
sub-saturation densities.
M.Baldo et al.. Nucl. Phys. A736, 241 (2004)
45Asymmetry (isospin) dependence of EOS
46Symmetry energy as a function of density. A
comparison at low density.
Microscopic results approximately fitted by
47Trying connection with phenomenology the
case. Density functional from microscopic
calculations
rel. mean field
Skyrme and Gogny
microscopic functional
The value of r_n - r_p from mic. fun. is
consistent with data
48A section (schematic)
of a neutron star
49The structure of nuclei and Z/N ratio are
dictated by beta equilibrium
Negele Vautherin classical paper. Simple
functional, and no pairing.
50Outer Crust
Inner Crust
No drip region
Drip region
Position of the neutron chemical potential
51Looking for the energy minimum at a fixed baryon
density
Density 1/30 saturation density
Wigner-Seitz approximation
52 The neutron matter EOS
Solid line Fayans functional Dashes
SLy4 Dotted line microscopic (Av-18)
53Including pairing in crust structure calculations
M.B., E. Saperstein et al. , Nucl. Phys. A750,
409 (2005)
54Dependence on the functionals
55In search of the energy minimum as a function
of the Z value inside the WS cell
56.
.
.
.
.
.
.
.
.
.
.
Neutron density profile at different Fermi momenta
57Proton density profile at different Fermi momenta
582
1
1
1
1 Negele Vautherin
2 Uniform nuclear matter (M.B.,Maieron,Schuck,Vi
nas NPA 736, 241 (2004))
59Comparing different Equations of State for low
density Despite the quite different lattice
structure, the EoS appears stable.