Early History of Metal Theory - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Early History of Metal Theory

Description:

Chapter 1: The Free Electron Fermi Gas Early History of Metal Theory 1900-1930 (Drude, Lorentz, Fermi, Dirac, Pauli, Sommerfeld, Bloch, ) The Basic Hamiltonian – PowerPoint PPT presentation

Number of Views:191
Avg rating:3.0/5.0
Slides: 20
Provided by: jk445
Learn more at: http://kono.rice.edu
Category:

less

Transcript and Presenter's Notes

Title: Early History of Metal Theory


1
Chapter 1 The Free Electron Fermi Gas
  • Early History of Metal Theory
  • 1900-1930 (Drude, Lorentz, Fermi, Dirac, Pauli,
    Sommerfeld, Bloch, )
  • The Basic Hamiltonian
  • Approximations Assumptions
  • The Ground State (T 0)
  • Wave-functions, allowed states, Fermi sphere,
    density of states
  • Thermal Properties
  • Expectation values, energy, specific heat
  • Electrical Transport Properties
  • DC and AC conductivities
  • Magnetic Properties
  • Classical Hall effect, Pauli paramagnetism,
    Landau quantization, the A-B phase, cyclotron
    resonance, the quantum Hall effect

2
Section 1.7 Magnetic Properties of a Free
Electron Fermi Gas
  1. The Classical Hall Effect
  2. Pauli Paramagnetism
  3. Landau Quantization
  4. The Aharonov-Bohm Phase
  5. Cyclotron Resonance
  6. The Quantum Hall Effect

3
The Hall Effect
z
x
y
Lorentz force
Balance equation
RH is independent of t and m ? An excellent
method for determining n
4
The Hall Effect
More formal derivation
magneto-resistivity tensor
magneto-conductivity tensor
Jy 0
5
Density within the Drude Model
rm kg/m3 mass density A kg atomic mass
(mass of one mole)
rm/A moles atoms per m3
NArm/A atoms per m3, NA 6.02 1023
n NArmZ/A electrons per m3, Z of valence
electrons
For Li, rm 0.542 103, A 6.941 10-3, Z 1
n 4.70 1028 m-3
6
Comparison with Experiments
For Li, rm 0.542 103, A 6.941 10-3, Z 1
n 4.70 1028 m-3
RH ?1.33 10-10 m3/C
good
RH(exp) ?1.7 10-10 m3/C
For Zn, rm 7.13 103, A 65.38 10-3, Z 2
n 1.31 1029 m-3
RH ?4.77 10-11 m3/C
bad
RH(exp) 3 10-11 m3/C
Positive Hall coefficient!
7
Cyclotron Frequency and the Hall Angle
8
Deviation from the Classical Hall Effect
9
How Difficult is wct gt 1 ?
me 10000 cm2/Vs ? B gt 1 Tesla me 1000 cm2/Vs
? B gt 10 Tesla me 100 cm2/Vs ? B gt 100 Tesla
10
Section 1.7 Magnetic Properties of a Free
Electron Fermi Gas
  1. The Classical Hall Effect
  2. Pauli Paramagnetism
  3. Landau quantization
  4. The Aharonov-Bohm Phase
  5. Cyclotron Resonance
  6. The Quantum Hall Effect

11
Paulis Spin Matrices
Lets concentrate on electronic spins
12
Zeeman Effect
quantization of angular momentum
  • B shifts the energy of each state by U
  • ml magnetic quantum number

13
Electron Spin
  • Anomalous Zeeman splitting
  • Stern-Gerlach experiment (1922) ? splitting into
    an even number of components (should be 2l 1)
  • Goudsmidt and Uhlenbeck (1925) spinning on its
    axis
  • Diracs theory (1928) existence of spin angular
    momentum

14
Spin Angular Momentum
ms spin quantum number
ms 1/2 spin up and ms -1/2 spin down
15
Gyromagnetic Ratio and the Electron g-factor
gyromagnetic ratio
g-factor
Quantum Electrodymanics (QED)
16
Spin is Purely Quantum Mechanical
Orbital angular momentum
As h ? 0, we can keep L non-zero by increasing
the size of l to infinity
Spin angular momentum
As h ? 0, S ? 0
17
Magnetic Susceptibility
Total field T or Wb/m2
Applied field A/m
Induced field A/m
4p 10-7 T-m/A
magnetization curve
c gt 0 paramagnetic c lt 0 diamagnetic
18
Calculate Spin c Classically
spin down
spin up
Consider N electrons in volume V at temperature T
in a magnetic field H, and calculate the total
magnetic moment M
Too large, and temperature dependent
19
Paulis Spin Susceptibility
g?(e)
2mBm0H
e
spin imbalance
magnetic moment per electron
g?(e)
Net magnetic moment per m3
Write a Comment
User Comments (0)
About PowerShow.com