Title: Telecommunications Technology AD DA Conversion
1Telecommunications TechnologyA/D D/A Conversion
ICS 620
2Overview
- Analog versus digital signals
- A/D D/A conversions
- Carrier Signaling formats
- dB
3Unity Chart
100
10-3
10-6
10-9
10-12
10-15
1015
1012
109
106
103
1
000
000
000
000
000
000
000
000
000
000
000
000
milli-
micro-
nano-
pico-
femto-
alto-
kilo-
mega-
giga-
tera-
peta-
exa-
K
M
G
T
m
?
n
p
f
P
E
a
4Analog versus digital signals
- Nature is analog
- Analog is frequency efficient
- Signals and noise
- As signals diminish, amplifiers are used
- Noise is amplified as well as signal
- Digital is more repeatable
- All we need is to detect and recreate
5A/D Conversions
Filter
Sample
Quantize
Encode
- Sample
- Nyquist Rate
- Quantize
- Number of Levels
- Encode
- Pulse Code Modulation
6(No Transcript)
7Sample
- Nyquist Rate
- How many samples are needed such that information
is not lost
Analog Signal
Time
8Sampling
One Possible Rate
Two times that Rate
9Sampling - A better view
Basic Rate
Two times Basic Rate
10Sampling - How Close Are We?
May be Okay?
Basic Rate
Two times Basic Rate
This is better.
11(No Transcript)
12The Nyquist Rate
- For fidelity, the sampling rate must be at least
two times the highest frequency of the information
Highest frequency
13(No Transcript)
14Filter
- Limits the frequency of the signal for processing
Signal Power
Low Pass
Frequency
Raw Signal
Input Signal
Frequency
Frequency
15Quantize
- Number of Levels
- A pure sample will be any of the infinite
possible number of levels
16Quantize
- It is impossible to transmit infinitely variable
values through digital means (without an
infinitely long number) - So we limit the possible values
17Quantize
2.0
1.9
1.8
1.7
1.6
1.525
Assign to 1.5
1.5
1.4
1.385
Assign to 1.4
1.3
1.2
1.1
1.0
Sample 1
Sample 2
18Encode
- Assign a binary code representing the signal
level value of the sample - How do we determine what the number of levels
will be?
One Possible Code
Volts
11010
An Example
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
19Pulse Code Modulation
- The US digital voice standard
- Uses 8 bits to represent 255 levels (0 000 0000
is not used) - The MSB is the sign bit
- The next 3 bits define a segment or chord
- The 4 LSBs are the level in the chord
20Companding
127
111
95
79
Output
63
47
31
15
Input
21Companding
22Expanded View
1111 1101 1011 1001 0111 0101 0011 0001
1110 1100 1010 1000 0110 0100 0010 0000
001
0
1111 1101 1011 1001 0111 0101 0011 0001
1110 1100 1010 1000 0110 0100 0010 0000
Output 0 000 1100
000
23Expanded View Again
1111 1101 1011 1001 0111 0101 0011 0001
1110 1100 1010 1000 0110 0100 0010 0000
001
0
1111 1101 1011 1001 0111 0101 0011 0001
1110 1100 1010 1000 0110 0100 0010 0000
Output 0 001 1101
000
24D/A Conversions
25Signal Formats
- Binary Formats
- Unipolar NRZ
- Unipolar RZ
- Polar NRZ
- Polar RZ
- Bipolar RZ -- Alternate Mark Inversion (AMI)
26Binary Formats
Mark
Mark
Mark
Mark
Space
Space
Space
1
0
1
0
0
1
1
Unipolar NRZ
Unipolar RZ
Polar NRZ
Polar RZ
Bipolar RZ (AM I)
27Bits Per Second Vs Baud
- Bits per second is a measure of the information
rate. - Baud is a measure of the transfer rate in symbols
per second - Only for binary formats are the rates equal
28Asynchronous Vs Synchronous
- Asynchronous has no timing requirements
- Uses Start and Stop bits for reference
- Synchronous has timing
- Relies on the clock for reference
- Continuous bit stream
29Asynchronous Vs Synchronous
Asynchronous
Isochronous
1
2
3
4
5
6
7
8
9
10
11
12
Synchronous
30Multiplexing
- Using a channel to transmit more than one
communication - Common forms--FDM, TDM, WDM
Combined Comm Path
Mux
Mux
Individual Comm Paths
Individual Comm Paths
31(No Transcript)
32Inverse-Multiplexing
- Using multiple channels to transmit information
larger than a single channel - E. G. 336Kbps video over 6 voice channels
Mux
Mux
Composite Comm Paths
Composite Comm Paths
Distributed Comm Path
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37Digital Trunk Hierarchy
38Multiplexed Signal Formats
- Transmission
- T-1 -- 1.544 Mbps
- T-2 -- 6.312 Mbps
- T-3 -- 44.736 Mbps
- T-4 -- 274.176 Mbps
- E-1 -- 2.048 Mbps
39Digital Trunk
T1 Mux (Chan Bank)
DS1
T2 Mux (M1-2)
24 DS0
T3 Mux (M2-3)
DS2
DS1
T4 Mux (M3-4)
DS1
DS2
DS2
DS3
DS1
DS2
DS3
1C Mux
DS2
DS4
48 DS0
DS1C
DS2
DS3
DS2
DS3
T3 Mux (M1-3)
Level Voice bps DS0 1
64k DS1 24 1.544M DS1c 48
3.152M DS2 96 6.312M DS3 672
44.736M DS4 4032 274.176M
DS3
28 DS1
DS3
North American Hierarchy
40Digital Trunk
E1 Mux
E1
E2 Mux
30 DS0
E4 Mux
E3
E1
E3 Mux
E2
E1
E2
E5 Mux
E3
E4
E1
E2
E3
E4
E3
E2
E5
E4
Level Voice bps DS0 1
64k E1 30 2.048M E2 120
8.448M E3 480 34.368M E4
1920 139.264M E5 7680 565.148M
E4
European Hierarchy
41T-Carrier Framing
Framing Bit
Channel 24
Channel 1
Channel 2
Info Bits
Info Bits
Info Bits
Signaling Bit (Sometimes)
Signaling Bit (Sometimes)
Signaling Bit (Sometimes)
DS0 is The D4 format of one time slot Baseband
digital signal 8bits at 8000 times/sec
42T-Carrier Framing
Framing Bit
Channel 24
Channel 1
Channel 2
FB
FB
FB
CH1
CH2
CH23
CH24
CH1
CH2
CH23
CH24
Frame 5
Frame 6
A DS1 frame -- 24 voice (DS0) channels
43E-Carrier Framing
Channel 31
Channel 0
Channel 1
b0
b7
CH1
CH15
CH31
CH1
CH30
CH31
CH30
CH15
CH0
CH0
CH16
CH16
Channels 0 and 16 are the signaling channels.
An E-1 frame -- 30 voice (DS0) channels with two
signal channels
44T-Carrier Framing
Framing Bit
Channel 24
Channel 1
Channel 2
FB
FB
FB
CH1
CH2
CH23
CH24
CH1
CH2
CH23
CH24
Frame 5
Frame 6
F5
F6
F7
F8
F9
F10
F11
F12
F12
F1
Superframe
45T1 Framing
F1
0
0
0
1
1
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
1
1
1
0
0
1
0
Superframe Framing Word
46T1 Framing
F1
0
0
0
1
1
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
1
1
1
0
0
1
0
Superframe Framing Word
Extended Superframe
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F5
F6
F7
F8
F9
F10
F11
F12
F24
F1
D
D
D
D
D
D
D
D
D
D
D
D
D
C4
C5
C6
C1
C2
C3
0
1
1
0
0
1
1
C bits CRC-6 bits D bits Data link bits
(Maint) 001011 6 bit framing pattern
47T2 Framing
T1 a
T1 b
4 each T1 Frames
T1 c
T1 d
1 T2 Frame
125?s
available for bit stuffing
12bits
M1
C11
C12
C13
F0
F1
M2
C21
C22
C23
F0
F1
125 ? s
M3
C31
C32
C33
F0
F1
M4
C41
C42
C43
F0
F1
M1
C11
C12
C13
F0
F1
48T2 Framing
Bit Interleaved
M1
48 Information Bits
Control Bit
49Network Design Considerations for T-Carriers
50Multiplexed Signal Formats
- One's Density Rule
- FCC -- limit 80 zeros with 12.5 density over a
short interval - Bellcore -- limit 15 zeros in row with a 12.5
average density. - And a CSU will require at least one "1" in each
byte
51Multiplexed Signal Formats-contd
- Synchronization
- Zero Code Suppression (ZCS)
- Bipolar with 8 Zero Substitution (B8ZS)
- Cyclical Redundancy Check (CRC)
52Normal Handling of Zeros
Framing Bit
Channel 24
Channel 1
Channel 2
FB
FB
FB
CH1
CH2
CH23
CH24
CH1
CH2
CH23
CH24
Frame 5
Frame 6
F5
F6
F7
F8
F9
F10
F11
F12
F12
F1
Superframe
Any occurrence of 8 Zeros will be replaced with 7
Zeros and a One.
53Zero Code Suppression (ZCS)
- ZCS is used in D4 and ESF by stuffing a 1
into a string of zeros to provide a keep-awake
signal to the distant end of the circuit.
54B8ZS
- Replaces any string of 8 zeros with a
recognizable line code that alerts the distance
end of the violation.
55B8ZS
0
0
0
0
1
0
1
0
0
0
0
Unipolar NRZ
AMI
B8ZS
AMI
B8ZS
56Multiplexed Signal Formats (cont'd)
- Fractional T-1
- Concept is to share network capacity
- Drop and insert technique
- Requires specialized channel bank
To Telco
Cust 1
Cust 2
Cust 3
Ch 1-5
Ch 6-17
Ch 17-24
57Amplification and Loss
- Signal Gain or Decrease
- System components
- Ratio of output to input
- Volts or Watts
System
Signal In
Signal Out
58Signal Strengths (dB)
- Power in decibels
- 10 log (power out / power in)
Example
System
25 Watts
5 Watts
Gain 10 x log ( 5 / 25 )
Gain 10 x log ( 0.2 )
Gain 10 x ( - 0.699 )
Gain - 6.99
Note Negative gain is a loss.
59dB Logarithms
n
Then
Log n
10
60Summary
- Analog and digital signals
- Multiplexing
- Carrier Signaling Format
- Amplification Losses