Binomial Theorem and Pascals Triangle - PowerPoint PPT Presentation

1 / 8
About This Presentation
Title:

Binomial Theorem and Pascals Triangle

Description:

Binomial Theorem and Pascal's Triangle. Practice Exercises (not to hand in) ... Pascal's Triangle. Pascal's Triangle represents the binomial coefficients. 1. 1 ... – PowerPoint PPT presentation

Number of Views:429
Avg rating:3.0/5.0
Slides: 9
Provided by: supp158
Category:

less

Transcript and Presenter's Notes

Title: Binomial Theorem and Pascals Triangle


1
Binomial Theorem and Pascals Triangle
  • Practice Exercises (not to hand in)
  • Section 5.4 1-20 odd (except 11), 33

2
Binomial Refresher
  • A binomial expression is simply the sum of two
    terms
  • For example
  • (xy)
  • (xy)2
  • When a binomial expression is expanded, the
    binomial coefficients can be seen
  • For example
  • (xy)2 x2 2xy y2
  • 1x2 2xy 1y2

3
Binomial Coefficients Combinations
  • Explore the following
  • (xy)3 (xy)(xy)(xy)
  • xxx xxy xyx xyy yxx yxy yyx yyy
  • x3 3x2y 3xy2 y3
  • Binomial Theorem
  • (xy)n ? C(n,k)xn-kyk

C(3,3)
C(3,0)
C(3,2)
C(3,1)
n
k0
4
Binomial Theorem
  • Problem
  • What is the expansion of (xy)4?
  • Solution
  • (xy)4 C(4,0)x4y0
  • C(4,1)x3y1
  • C(4,2)x2y2
  • C(4,3)x1y3
  • C(4,4)x0y4
  • 1x4 4x3y 6x2y2 4xy3 y4

5
Binomial Coefficients Combinations
  • Problem
  • Find the coefficient x4y7 in the expansion of
    (xy)11
  • Solution
  • n 11 and k 7
  • C(11,7)x11-7y7
  • (111098) x11-7y7 7920x4y7

6
Pascals Triangle
  • Pascals Triangle represents the binomial
    coefficients

1
C(0,0)
1 1
C(1,0) C(1,1)
1 2 1
C(2,0) C(2 ,1) C(2,2)
1 3 3 1
C(3,0) C(3,1) C(3,2) C(3,3)
1 4 6 4 1
C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)
7
Properties of Combinations
  • C(n,0) for
    any n 0 C(n,n)
  • C(n,r) C(n,n-r) for any 0
    r n
  • C(n1,r) C(n,r) C(n,r-1) for any 1 r
    n
  • 4. C(n,0) C(n,1) C(n,n) for any
    n 0

8
Some Corollaries of the Binomial Theorem
  • Corollary 1 (a b 1)
  • Corollary 2 (a 1, b -1)
  • Corollary 3 (a 1, b 2)
Write a Comment
User Comments (0)
About PowerShow.com