Title: Essential Questions
1Essential Questions
- How do we use the Binomial Theorem to expand a
binomial raised to a power? - How do we find binomial probabilities and test
hypotheses?
2You used Pascals triangle to find binomial
expansions in Lesson 6-2. The coefficients of the
expansion of (x y)n are the numbers in Pascals
triangle, which are actually combinations.
3The pattern in the table can help you expand any
binomial by using the Binomial Theorem.
4Example 1 Expanding Binomials
Use the Binomial Theorem to expand the binomial.
(a b)5
The sum of the exponents for each term is 5.
(a b)5 5C0a5b0
5C1a4b1
5C2a3b2
5C3a2b3
5C4a1b4
5C5a0b5
5Example 2 Expanding Binomials
Use the Binomial Theorem to expand the binomial.
(2x y)3
(2x y)3 3C0(2x)3y0
3C1(2x)2y1
3C2(2x)1y2
3C3(2x)0y3
6(No Transcript)
7Example 3 Expanding Binomials
Use the Binomial Theorem to expand the binomial.
(x y)5
(x y)5 5C0x5(y)0
5C1x4(y)1
5C2x3(y)2
5C4x1(y)4
5C3x2(y)3
5C5x0(y)5
8Example 4 Expanding Binomials
Use the Binomial Theorem to expand the binomial.
(a 2b)3
3C1a2(2b)1
(a 2b)3 3C0a3(2b)0
3C3a0(2b)3
3C2a1(2b)2
9Lesson 3.3 Practice A