Lecture 11 Binomial theorem - PowerPoint PPT Presentation

1 / 10
About This Presentation
Title:

Lecture 11 Binomial theorem

Description:

C(1,0) C(1,1) C(2,0) C(2,1) C(2,2) C(3,0) C(3,1) C(3,2) C(3,3) C(4,0) C(4,1) ... Example- Find the probability of drawing an ace from a standard deck of cards. ... – PowerPoint PPT presentation

Number of Views:1270
Avg rating:3.0/5.0
Slides: 11
Provided by: Defa67
Category:

less

Transcript and Presenter's Notes

Title: Lecture 11 Binomial theorem


1
Lecture 11 Binomial theorem
  • June 25th , 2003

2
  • Pascals Triangle
  • C(0,0)
  • C(1,0) C(1,1)
  • C(2,0) C(2,1) C(2,2)
  • C(3,0) C(3,1) C(3,2) C(3,3)
  • C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)
  • C(5,0) C(5,1) C(5,2) C(5,3) C(5,4)
    C(5,5)
  • C(n,0) C(n,1)
    C(n,n-1) C(n,n)

0 1 2 3 4 5 n
Row
3
  • Pascal triangle (cont.)
  • 1
  • 1 1
  • 1 2 1
  • 1 3 3 1
  • 1 4 6 4 1
  • 1 5 10 10 5 1
  • 1 6 15 20 15 6 1

C(n,k) C(n-1,k-1) C(n-1,k) 1ltklt(n-1)
4
  • Pascal triangle -- proof
  • Mathematical proof
  • Combinatorial proof.

5
Binomial Theorem
  • For every nonnegative integer n,

C(n,k) -- binomial coefficient
6
Binomial Theorem--proof
  • Mathematic Induction.
  • Combinatorial methods

7
Binomial Theorem-application
  • (x-3)4C(4,0)x4(-3)0C(4,1)x3(-3)1C(4,2)x2(-3)2
  • C(4,3)x1(-3)3C(4,4)x0(-3)4
  • x4 - 12x3 54x2 - 108x 81
  • The term k1 in the expansion of (ab)n is C(n,k)
    an-kbk.
  • 2n C(n,0) C(n,1) C(n,k) C(n,n)

8
Introduction to probability
S - Sample space E Event P(E)
Probability Example- Find the probability of
drawing an ace from a standard deck of cards.
S52, E4, P(E)4/52
9
Probability distribution
Example ---practice 38
10
Assignment 3
  • Exercise 3.6
  • 1b, 1f, 15, 18
Write a Comment
User Comments (0)
About PowerShow.com