Chapter 7 Review - PowerPoint PPT Presentation

1 / 72
About This Presentation
Title:

Chapter 7 Review

Description:

Chapter 7 Review. Rules and Examples for Writing Chemical ... Cuprous chloride. Cu. 1. 1. 1 1- Cl. Ferric bromate. Fe. 1. 3. 3 1- (BrO3) Mercuric nitride ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 73
Provided by: Works209
Category:

less

Transcript and Presenter's Notes

Title: Chapter 7 Review


1
Chapter 7 Review
  • Rules and Examples for Writing Chemical Names and
    Chemical Formulas
  • Formula Mass
  • Molar Mass
  • Mole-to-Mass Conversions
  • Percentage Composition
  • Empirical Formulas

2
Chemical Formulas and Names
3
Chemical Name and Chemical Formula Rules and
Examples
4
Compound Identification Dichotomous Flow Chart
Ionic Compounds Ionic Bonds Compounds of
and Ions Ionic
Molecular Compounds Covalent
Bonds Not Compounds of and Ions or
Hydrogen is the First Element
Suffix endings for cations Lower oxidation
state - ous Example ferrous sulfate Higher
oxidation state - ic Example ferric sulfate
Stock Method 1. Cation 1st 2. ( ) if needed 3.
Anion 2nd Traditional Method 1. Cation 1st
2. Anion 2nd
Two Elements No Hydrogen Simple Binary
Prefixes 1. mono 2. di 3. tri 4. tetra
5. penta 6. hexa 7. hepta 8. octa 9.
nona 10. deca
Two or More Elements Hydrogen is 1st Element
Acids
Traditional 1. Prefix - 1st Element 2. 1st
Element Name 3. Prefix - 2nd Element 4. Root of
2nd Element 5. -ide Stock Method 1. Element
Name 2. Apparent Charge ( ) 3. Root-ide
Three or More Elements Oxygen is the Last
Element Ternary Acids Oxyacids
Two Elements Only Binary Acids
Ion
Acid 1. Hypo-root-ite 1. Hypo-root-ous
Acid 2. Root-ite 2. Root-ous Acid 3.
Root-ate 3. Root-ic Acid 4.
Per-root-ate 4. Per-root-ic Acid
Undissolved pure (g) Binary
Acids Undissolved
Dissolved aqueous (aq) Binary
Acids Dissolved
Hydrogen Root-ide
Hydro-root-ic Acid
5
Ionic Stock SystemName to Formula
  • 1. Write cation with charge for 1st component.
  • 2. Write anion with charge for 2nd component.
  • 3. Crisscross charges to form subscripts. Reduce
  • the subscripts to smallest ratio if empirical
  • formula is needed.
  • 4. Use ( ) for polyatomic ions where needed.
  • 5. Erase the charges.

6
Silver chloride
1-
1
  • Ag

Cl
1
1
7
Vanadium (II) sulfide
2-
2
  • V

S
2
2
8
Chromium (III) nitride
3-
3
  • Cr

N
3
3
9
Sodium oxide
2-
1
  • Na

O
2
1
10
Copper (II) bromide
1-
2
  • Cu

Br
1
2
11
Potassium nitride
3-
1
  • K

N
3
1
12
Lead (III) iodide
1-
3
  • Pb

I
1
3
13
Iron (II) phosphate
2
3-
  • Fe

(PO4)
3
2
14
Bismuth sulfite
3
2-
  • Bi

(SO3)
2
3
15
Lead (IV) borate
4
3-
  • Pb

(BO3)
3
4
16
Ammonium carbonate
1
2-
  • (NH4)

CO3
2
1
17
Ionic Stock SystemFormula to Name
  • 1. Write the cation name for the 1st component.
  • Use ( ) where needed to identify ions of
  • multiple oxidation states.
  • 2. Write the anion name for the 2nd component.

18
(Hg2)3(PO4)2
Mercury (I)
phosphate
19
FeSO4
Iron (II)
sulfate
20
Zn(C2H3O2)2
Zinc
acetate
21
(NH4)2CrO4
Ammonium
chromate
22
Sr(NO3)2
Strontium
nitrate
23
Ionic Traditional SystemName to Formula
  • 1. Write the cation formula for the 1st
    component.
  • Use ic to identify the higher oxidation
    state
  • of the ion and ous to identify the lower
  • oxidation state of the ion.
  • 2. Write the anion formula for the 2nd component.
  • 3. Balance the charges by crisscross method.

24
Cuprous chloride
1-
1
  • Cu

Cl
1
1
25
Ferric bromate
1-
3
  • Fe

(BrO3)
1
3
26
Mercuric nitride
3-
2
  • Hg

N
3
2
27
Ionic Traditional SystemFormula to Name
  • 1. Write the cation name for the 1st component.
  • Use the higher oxidation state of the ion for
  • ic and the lower oxidation state of the ion
  • for ous.
  • 2. Write the anion name for the 2nd component.

28
Cu3(AsO3)2
Cupric
arsenate
29
FeO
Ferrous
oxide
30
Hg2CN
Mercurous
cyanide
31
Simple Binary Traditional SystemName to Formula
  • 1. Write the symbol of the first element.
  • 2. Write the number of the prefix of the first
    element as a subscript.
  • Write the symbol of the second element.
  • Write the number of the prefix of the second
    element as a subscript.

32
Tetracarbon disulfide
  • C

S
2
4
33
Pentasilicon decanitride
  • Si

N
10
5
34
Simple Binary Traditional SystemFormula to Name
  • Write the prefix of the number of the first
  • element.
  • 2. Write the name of the first element.
  • Write the prefix of the number of the second
  • element.
  • Write the root of the element of the second
  • element.
  • 5. Add the suffix ide.

35
N3O7
Tri
nitrogen
hepta
ox
ide
36
P2S8
phosphorus
octa
sulf
ide
Di
37
Simple Binary Stock SystemName to Formula
  • Write the symbol of the element of first
    component and provide the apparent charge.
  • 2. Write the symbol of the element of the
    second component and provide the charge.
  • 3. Determine the subscript of the first element
    by crisscross calculation.
  • Determine the subscript of the second element by
    crisscross calculation.
  • Erase the charges and reduce subscripts if needed
    to show the empirical formula.

38
Arsenic (IV) nitride
4
3-
  • As

N
4
3
39
Nitrogen (II) oxide
2
2-
  • N

O
2
2
40
Simple Binary Stock SystemFormula to Name
  • Write the name of the element of first
    component.
  • 2. Write the apparent charge of the first
    element in ( ) behind the name.
  • Write the root of the second element.
  • 4. Add the suffix ide.

41
C3Cl9
Carbon
(III)
chlor
ide
42
Ge2F4
Germanium
(II)
fluor
ide
43
Binary Acids UndissolvedFormula to Name
  • Write the name of the element hydrogen.
  • 2. Write the root of the second element.
  • 3. Add the suffix ide.

44
HF(g)
Hydrogen
fluor
ide
45
H2S(g)
Hydrogen
sulf
ide
46
Binary Acids UndissolvedName to Formula
  • Write the symbol of the element hydrogen.
  • 2. Write the symbol of the root element.
  • Make sure the subscript of hydrogen matches
    charge on the anion element.
  • Provide the symbol (g) as a subscript behind the
    second element.

47
Hydrogen chloride
  • H

Cl
(g)
48
Hydrogen iodide
  • H

I
(g)
49
Binary Acids DissolvedFormula to Name
  • Write the prefix hydro.
  • 2. Write the root of the second element.
  • Add the suffix ic.
  • Provide the name acid.

50
HBr(aq)
Hydro
brom
ic
acid
51
HF(aq)
Hydro
fluor
ic
acid
52
Binary Acids DissolvedName to Formula
  • Write the symbol of the element hydrogen.
  • 2. Write the symbol of the root element.
  • Make sure the subscript of hydrogen matches
    charge on the anion element.
  • Provide the symbol (aq) as a subscript behind
    the second element.

53
Hydrchloric acid
  • H

Cl
(aq)
54
Hydrosulfuric acid
  • H

S
2
(aq)
55
OxyacidsFormula to Name
  • Identify the ion pattern of the oxyacid.
  • 2. Follow the naming pattern for the specific
    ion that has been identified.

56
H2SO4
SO4 ate
Sulfur
ic
acid
57
H3PO2
PO2 hypo ite
Hypo
phosphor
ous
acid
58
OxyacidsName to Formula
  • Identify the name pattern of the oxyacid.
  • Identify the ion pattern for the specific
    oxyacid root name that has been identified.
  • Write the ion and charge.
  • Place the correct number of hydrogen in front of
    the oxyion formula to cancel the charge on the
    oxyion.
  • Remove the charge on the oxyion.

59
Chlorous acid
Chlorous chlorite ClO2-
1-
  • H

ClO2
1
60
Perchromic acid
Perchromic perchromate CrO52-
2-
  • H

CrO5
2
61
Formula Mass
62
2 Al atom x 26.98 amu Al
atom 3 C atom x 12.01 amu
C atom 9 O atoms x 16.00 amu
O atom _________ Al2(CO3)3
233.99 amu
53.96 amu

36.03 amu

144.00 amu
63
Molar Mass
64
1 mol Ca x 40.08 g/mol mol
Ca 2 mol N x 14.01 g/mol
mol N 6 mol O x 16.00 g/mol
mol O _________ Ca(NO3)2
164.10 g/mol
40.08 g Ca

28.02 g N

96.00 g O
65
Mole-to-Mass Conversions
66
How many moles is 345.6 g of Ca(NO3)2 ? ?
mol Ca(NO3)2 345.6 g Ca(NO3)2 x mol Ca(NO3)2

164.10 g Ca(NO3)2 ?
mol Ca(NO3)2 2.106 mol Ca(NO3)2
67
PercentageComposition
68
Determine the percentage composition of
Al2(CO3)3 . 53.96 g
233.99 g/mol 36.03 g
233.99 g/mol 144.00g
233.99 g/mol
x 100 23.06 Al
Al
x 100 15.40 C
C
x 100 61.54 O
O
69
Empirical Formulas
70
  • Calculate the empirical formula
  • of a compound that is 32.38 g
  • Na, 22.65 g S, and 44.99 g O.
  • Do the following to calculate
  • the empirical formula
  • Convert each element mass in
  • grams (or ) to moles.
  • 2. Find the smallest whole
  • number ratio of elements.

71
Convert each gram amount to the number of moles
of each element. 32.38 g Na x 1 mol
22.99 g 22.65 g S x 1 mol
32.07 g 44.99 g O x 1 mol
16.00 g
1.408 mol Na
0.7063 mol S
2.812 mol O
72
Then convert the moles of each element into the
smallest mole ratio by dividing each mole number
by the smallest mole number. Na1.408 S.7063
O2.812 Na2SO4 .7063 .7063 .7063
If ratio is not in whole s, multiply.
Write a Comment
User Comments (0)
About PowerShow.com