Title: Symmetry Definitions and Perception of Symmetry
1Symmetry Definitions and Perception of Symmetry
2(No Transcript)
3Symmetry
- Definitions
- The concise Oxford Dictionary says
- " 1.(Beauty resulting from) right proportion
between the parts of the body or any whole,
balance, harmony, keeping. 2. Such structure as
allows of an objects being divided by a point or
a line or plane or radiating lines or planes into
two or more parts exactly similar in size and
shape and in position relative to the dividing
point, ect. repetition of exactly similar parts
facing each other or a centre,...."
4(No Transcript)
5(No Transcript)
6Type of symmetry - Rotation
- A figure has rotational symmetry when it can be
rotated less than 360 around a central point, or
point of rotation and still match the original
figure - Example
7(No Transcript)
8Type of symmetry - Translation
- Move it without rotating or reflecting it
- Every translation has a direction and a distance
- Before translation
After translation
9(No Transcript)
10Type of symmetry - Reflection
- Reflection symmetry is sometimes called "mirror"
or "flip" symmetry. - It's easy to see why A butterfly (see
below) may have reflection
symmetry - because one side is a mirror image of
the other. - Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
- Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
                                              - Notice that a vertical line down the center of
the butterfly's body serves as what is called
the "line of symmetry."
11Type of symmetry - Reflection
- The letter A has reflection symmetry similar to
the butterfly.
12Type of symmetry - Glide Reflection
- Involves more than one step
- Combination of a reflection and a translation
along the direction of the mirror line
13(No Transcript)
14(No Transcript)
15(No Transcript)
16Symmetry groups- Platonic solids
Platonic solids are perfectly regular solids with
the following conditions all sides are equal and
all angles are the same and all faces are
identical. In each corner of such a solid the
same number of surfaces collide. Only five
Platonic solids exist tetrahedron , hexahedron,
octahedron, dodecahedron and icosahedron
17Symmetry groups- Platonic solids
- The tetrahedron is bounded by four equilateral
triangles. It has the smallest volume for its
surface and represents the property of dryness.
It corresponds to fire.
- The hexahedron is bounded by six squares. The
hexadedron, standing firmly on its base,
corresponds to the stable earth.
18Symmetry groups- Platonic solids
- The octahedron is bounded by eight equilateral
triangles. It rotates freely when held by two
opposite vertices and corresponds to air.
- The dodecahedron is bounded by twelve equilateral
pentagons. It corresponds to the universe because
the zodiac has twelve signs corresponding to the
twelve faces of the dodecahedron.
19Symmetry groups- Platonic solids
- The icosahedron is bounded by twenty equilateral
triangles. It has the largest volume for its
surface area and represents the property of
wetness. The icosahedron corresponds to water.
20Perception of Symmetry- Some psychological
observations
- The human face is approximately, symmetrical the
difference are usually unnoticed . - What happen when we mirror our face?
Original picture
Duplicate the right side
Duplicate the left side