Applied Econometrics - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Applied Econometrics

Description:

Namelist ; X2 = one,wa,we,ha,he,income ; Z2 = X2,Lambda $ Logit ; Lhs = lfp ; Rhs = Z2 ... HA -.01197824 .02549883 -.470 .6385. HE -.02290480 .04862978 -.471 .6376 ... – PowerPoint PPT presentation

Number of Views:450
Avg rating:3.0/5.0
Slides: 31
Provided by: valued79
Category:

less

Transcript and Presenter's Notes

Title: Applied Econometrics


1
Applied Econometrics
  • William Greene
  • Department of Economics
  • Stern School of Business

2
Applied Econometrics
  • 19. Two Applications of Maximum
  • Likelihood Estimation and a Two Step
  • Estimation Method

3
Model for a Binary Dependent Variable
  • Describe a binary outcome.
  • Event occurs or doesnt (e.g., the democrat wins,
    the person enters the labor force,
  • Model the probability of the event
  • Requirements
  • 0 lt Probability lt 1
  • P(x) should be monotonic in x its a CDF

4
Two Standard Models
  • Based on the normal distribution
  • Proby1x F(ßx) CDF of normal distribution
  • The probit model
  • Based on the logistic distribution
  • Proby1x exp(ßx)/1 exp(ßx)
  • The logit model
  • Log likelihood
  • P(yx) (1-F)(1-y) Fy where F the cdf
  • Log-L Si (1-yi)log(1-Fi) yilogFi
  • Si F(2yi-1) ßx since F(-t)1-F(t)
    for both.

5
Coefficients in the Binary Choice Models
  • Eyx 0(1-Fi) 1Fi P(y1x)
  • F(ßx)
  • The coefficients are not the slopes, as
    usual
  • in a nonlinear model
  • ?Eyx/?x f(ßx) ß
  • These will look similar for probit and logit

6
Application Female Labor Supply
1975 Survey Data Mroz (Econometrica) 753
Observations Descriptive Statistics Variable
Mean Std.Dev. Minimum Maximum
Cases Missing
All
observations in current sample ------------------
--------------------------------------------------
--------- LFP .568393 .495630
.000000 1.00000 753 0 WHRS
740.576 871.314 .000000 4950.00
753 0 KL6 .237716
.523959 .000000 3.00000 753
0 K618 1.35325 1.31987 .000000
8.00000 753 0 WA
42.5378 8.07257 30.0000 60.0000
753 0 WE 12.2869 2.28025
5.00000 17.0000 753 0 WW
2.37457 3.24183 .000000
25.0000 753 0 RPWG 1.84973
2.41989 .000000 9.98000 753
0 HHRS 2267.27 595.567
175.000 5010.00 753 0 HA
45.1208 8.05879 30.0000 60.0000
753 0 HE 12.4914
3.02080 3.00000 17.0000 753
0 HW 7.48218 4.23056 .412100
40.5090 753 0 FAMINC
23080.6 12190.2 1500.00 96000.0
753 0 KIDS .695883 .460338
.000000 1.00000 753 0
7
Estimated Choice Models for Labor Force
Participation
--------------------------------------------------
-------------------- Binomial Probit
Model Dependent variable LFP Log
likelihood function -488.26476 (Probit) Log
likelihood function -488.17640
(Logit) -----------------------------------------
---------------------------- Variable
Coefficient Standard Error b/St.Er. PZgtz
Mean of X --------------------------------------
------------------------------- Index
function for probability Constant .77143
.52381 1.473 .1408 WA
-.02008 .01305 -1.538 .1241
42.5378 WE .13881 .02710
5.122 .0000 12.2869 HHRS
-.00019 .801461D-04 -2.359 .0183
2267.27 HA -.00526 .01285
-.410 .6821 45.1208 HE
-.06136 .02058 -2.982 .0029
12.4914 FAMINC .00997 .00435
2.289 .0221 23.0806 KIDS
-.34017 .12556 -2.709 .0067
.69588 -----------------------------------------
---------------------------- Binary Logit Model
for Binary Choice -------------------------------
--------------------------------------
Characteristics in numerator of ProbY
1 Constant 1.24556 .84987
1.466 .1428 WA -.03289
.02134 -1.542 .1232 42.5378
WE .22584 .04504 5.014
.0000 12.2869 HHRS -.00030
.00013 -2.326 .0200 2267.27
HA -.00856 .02098 -.408
.6834 45.1208 HE -.10096
.03381 -2.986 .0028 12.4914
FAMINC .01727 .00752 2.298
.0215 23.0806 KIDS -.54990
.20416 -2.693 .0071
.69588 ------------------------------------------
---------------------------
8
Marginal Effects
--------------------------------------------------
-------------------- Partial derivatives of
probabilities with respect to the vector of
characteristics. They are computed at the means
of the Xs. Observations used are All
Obs. --------------------------------------------
------------------------- Variable Coefficient
Standard Error b/St.Er. PZgtz
Elasticity --------------------------------------
------------------------------- PROBIT
Index function for probability WA
-.00788 .00512 -1.538 .1240
-.58479 WE .05445 .01062
5.127 .0000 1.16790
HHRS-.74164D-04 .314375D-04 -2.359
.0183 -.29353 HA -.00206
.00504 -.410 .6821 -.16263
HE -.02407 .00807 -2.983
.0029 -.52488 FAMINC .00391
.00171 2.289 .0221 .15753
Marginal effect for dummy variable is P1 -
P0. KIDS -.13093 .04708
-2.781 .0054 -.15905 Variable Coefficient
Standard Error b/St.Er. PZgtz
Elasticity --------------------------------------
------------------------------- LOGIT
Marginal effect for variable in probability
WA -.00804 .00521 -1.542
.1231 -.59546 WE .05521
.01099 5.023 .0000 1.18097
HHRS-.74419D-04 .319831D-04 -2.327
.0200 -.29375 HA -.00209
.00513 -.408 .6834 -.16434
HE -.02468 .00826 -2.988
.0028 -.53673 FAMINC .00422
.00184 2.301 .0214 .16966
Marginal effect for dummy variable is P1 -
P0. KIDS -.13120 .04709
-2.786 .0053 -.15894 ---------------------
------------------------------------------------
9
Income Data
10
Score Function
11
Variance of the First Derivative
12
Hessian
13
Variance Estimators
14
Exponential Regression
--gt logl lhshhninc rhs x modelexp
Normal exit 11 iterations. Status0. F
-1550.075 ----------------------------------------
------------------------------ Exponential
(Loglinear) Regression Model Dependent variable
HHNINC Log likelihood function
1550.07536 Restricted log likelihood
1195.06953 Chi squared 5 d.f.
710.01166 Significance level
.00000 McFadden Pseudo R-squared
-.2970587 Estimation based on N 27322, K
6 -----------------------------------------------
---------------------- Variable Coefficient
Standard Error b/St.Er. PZgtz Mean of
X -----------------------------------------------
---------------------- Parameters in
conditional mean function Constant 1.77430
.04501 39.418 .0000 AGE
.00205 .00063 3.274 .0011
43.5272 EDUC -.05572 .00271
-20.539 .0000 11.3202 MARRIED
-.26341 .01568 -16.804 .0000
.75869 HHKIDS .06512 .01399
4.657 .0000 .40272 FEMALE -.00542
.01234 -.439 .6603
.47881 ------------------------------------------
--------------------------- Note , ,
Significance at 1, 5, 10 level. ---------------
--------------------------------------------------
-----
15
Variance Estimators
histogramrhshhninc reject hhninc0 namelist
X one, age,educ,married,hhkids,female
loglinear lhshhninc rhs x modelexp
create thetai exp(b'x) create gi
(hhninc/thetai - 1) gi2 gi2 create hi
(hhninc/thetai) matrix Expected ltX'Xgt
Stat(b,Expected,X) matrix Actual ltX'hiXgt
Stat(b,Actual,X) matrix BHHH
ltX'gi2Xgt Stat(b,BHHH,X) matrix Robust
Actual X'gi2X Actual Stat(b,Robust,X)
16
Estimates
-------------------------------------------------
--------- Variable Coefficient Standard Error
b/St.Er. PZgtz ------------------------------
---------------------------- --gt matrix
Expected ltX'Xgt Stat(b,Expected,X) Constant
1.77430 .04548 39.010 .0000
AGE .00205 .00061 3.361
.0008 EDUC -.05572 .00269
-20.739 .0000 MARRIED -.26341
.01558 -16.902 .0000 HHKIDS
.06512 .01425 4.571 .0000
FEMALE -.00542 .01235 -.439
.6605 --gt matrix Actual ltX'hiXgt
Stat(b,Actual,X) Constant 1.77430
.11922 14.883 .0000 AGE .00205
.00181 1.137 .2553 EDUC
-.05572 .00631 -8.837 .0000
MARRIED -.26341 .04954 -5.318
.0000 HHKIDS .06512 .03920
1.661 .0967 FEMALE -.00542
.03471 -.156 .8759 --gt matrix BHHH
ltX'gi2Xgt Stat(b,BHHH,X) Constant
1.77430 .05409 32.802 .0000
AGE .00205 .00069 2.973
.0029 EDUC -.05572 .00331
-16.815 .0000 MARRIED -.26341
.01737 -15.165 .0000 HHKIDS
.06512 .01637 3.978 .0001
FEMALE -.00542 .01410 -.385
.7004 --gt matrix Robust Actual X'gi2X
Actual Constant 1.77430 .28500
6.226 .0000 AGE .00205
.00481 .427 .6691 EDUC
-.05572 .01306 -4.268 .0000
MARRIED -.26341 .14581 -1.806
.0708 HHKIDS .06512 .09459
.689 .4911 FEMALE -.00542
.08580 -.063 .9496 ---------------------
-------------------------------------
17
GARCH Models A Model for Time Series with Latent
Heteroscedasticity
Bollerslev/Ghysel, 1974
18
ARCH Model
19
GARCH Model
20
Estimated GARCH Model
--------------------------------------------------
-------------------- GARCH MODEL Dependent
variable Y Log likelihood
function -1106.60788 Restricted log
likelihood -1311.09637 Chi squared 2 d.f.
408.97699 Significance level
.00000 McFadden Pseudo R-squared
.1559676 Estimation based on N 1974, K
4 GARCH Model, P 1, Q 1 Wald statistic for
GARCH 3727.503 ----------------------------
----------------------------------------- Variable
Coefficient Standard Error b/St.Er.
PZgtz Mean of X ----------------------------
-----------------------------------------
Regression parameters Constant -.00619
.00873 -.709 .4783
Unconditional Variance Alpha(0) .01076
.00312 3.445 .0006 Lagged
Variance Terms Delta(1) .80597
.03015 26.731 .0000 Lagged
Squared Disturbance Terms Alpha(1) .15313
.02732 5.605 .0000
Equilibrium variance, a0/1-D(1)-A(1) EquilVar
.26316 .59402 .443
.6577 -------------------------------------------
--------------------------
21
2 Step Estimation (Murphy-Topel)
  • Setting, fitting a model which contains parameter
    estimates from another model.
  • Typical application, inserting a prediction from
    one model into another.
  • A. Procedures How it's done.
  • B. Asymptotic results
  • 1. Consistency
  • 2. Getting an appropriate estimator of the
  • asymptotic covariance matrix
  • The Murphy - Topel result
  • Application Equation 1 Number of children
  • Equation 2 Labor force participation

22
Setting
  • Two equation model
  • Model for y1 f(y1 x1,?1)
  • Model for y2 f(y2 x2, ?2, x1, ?1))
  • (Note, not simultaneous or even recursive.)
  • Procedure
  • Estimate ?1 by ML, with covariance matrix (1/n)V1
  • Estimate ?2 by ML treating ?1 as if it were
    known.
  • Correct the estimated asymptotic covariance
    matrix, (1/n)V2 for the estimator of ?2

23
Murphy and Topel (1984) Results
  • Both MLEs are consistent

24
MT Computations
25
Example
  • Equation 1 Number of Kids - Poisson Regression
  • p(yi1xi1, ß)exp(-?i)?iyi1/yi1!
  • ?i exp(xi1ß)
  • gi1 xi1 (yi1 ?i)
  • V1 (1/n)S(-?i)xi1xi1-1

26
Example - Continued
  • Equation 2 Labor Force Participation Logit
  • p(yi2xi2,d,a,xi1,ß)exp(di2)/1exp(di2)P
    i2
  • di2 (2yi2-1)dxi2 a?i
  • ?i exp(ßxi1)
  • Let zi2 (xi2, ?i), ?2 (d, a)
  • di2 (2yi2-1)?2zi2
  • gi2 (yi2-Pi2)zi2
  • V2 (1/n)S-Pi2(1-Pi2)zi2zi2-1

27
Murphy and Topel Correction
28
Two Step Estimation of LFP Model
? Data transformations. Number of kids, scale
income variables Create Kids kl6 k618
income faminc/10000 Wifeinc
wwwhrs/1000 ? Equation 1, number of kids.
Standard Poisson fertility model. ? Fit equation,
collect parameters BETA and covariance matrix
V1 ? Then compute fitted values and
derivatives Namelist X1 one,wa,we,income,wife
inc Poisson Lhs kids Rhs X1 Matrix
Beta b V1 NVARB Create Lambda
Exp(X1'Beta) gi1 Kids - Lambda ? Set up
logit labor force participation model ? Compute
probit model and collect results.
DeltaCoefficients on X2 ? Alpha coefficient on
fitted number of kids. Namelist X2
one,wa,we,ha,he,income Z2 X2,Lambda Logit
Lhs lfp Rhs Z2 Calc alpha
b(kreg) K2 Col(X2) Matrix deltab(1K2)
Theta2 b V2 NVARB ? Poisson
derivative of with respect to beta is (kidsi -
lambda)X1 Create di delta'X2
alphaLambda pi2 exp(di)/(1exp(di))
gi2 LFP - Pi2 ? These are the
terms that are used to compute R and C.
ci gi2gi2alphalambda ri
gi2gi1 MATRIX C 1/nZ2'ciX1
R 1/nZ2'riX1 A CV1C' -
RV1C' - CV1R' V2S V2V2AV2
V2s 1/NV2S ? Compute matrix products and
report results Matrix Stat(Theta2,V2s,Z2)
29
Estimated Equation 1 EKids
---------------------------------------------
Poisson Regression
Dependent variable KIDS
Number of observations 753
Log likelihood function -1123.627
---------------------------------------------
----------------------------------------------
-------------------- Variable Coefficient
Standard Error b/St.Er.PZgtz Mean of
X -------------------------------------------
----------------------- Constant
3.34216852 .24375192 13.711 .0000 WA
-.06334700 .00401543 -15.776
.0000 42.5378486 WE -.02572915
.01449538 -1.775 .0759 12.2868526
INCOME .06024922 .02432043 2.477
.0132 2.30805950 WIFEINC -.04922310
.00856067 -5.750 .0000 2.95163126
30
Two Step Estimator
---------------------------------------------
Multinomial Logit Model
Dependent variable LFP
Number of observations 753
Log likelihood function -351.5765
Number of parameters 7
---------------------------------------------
----------------------------------------------
-------------------- Variable Coefficient
Standard Error b/St.Er.PZgtz Mean of
X -------------------------------------------
-----------------------
Characteristics in numerator of ProbY 1
Constant 33.1506089 2.88435238 11.493
.0000 WA -.54875880 .05079250
-10.804 .0000 42.5378486 WE
-.02856207 .05754362 -.496 .6196
12.2868526 HA -.01197824
.02528962 -.474 .6358 45.1208499 HE
-.02290480 .04210979 -.544
.5865 12.4913679 INCOME .39093149
.09669418 4.043 .0001 2.30805950
LAMBDA -5.63267225 .46165315 -12.201
.0000 1.59096946 With Corrected Covariance
Matrix ---------------------------------------
----------------- Variable Coefficient
Standard Error b/St.Er.PZgtz
--------------------------------------------
------------ Constant 33.1506089
5.41964589 6.117 .0000 WA
-.54875880 .07780642 -7.053 .0000 WE
-.02856207 .12508144 -.228
.8194 HA -.01197824 .02549883
-.470 .6385 HE -.02290480
.04862978 -.471 .6376 INCOME
.39093149 .27444304 1.424 .1543
LAMBDA -5.63267225 1.07381248 -5.245
.0000
Write a Comment
User Comments (0)
About PowerShow.com