Prsentation PowerPoint - PowerPoint PPT Presentation

About This Presentation
Title:

Prsentation PowerPoint

Description:

on CP Violation and Rare Decay Searches. in the B and K Meson Systems. CKM Quark Flavor Mixing ... CPV in interference between decay amplitudes. The CKM Matrix ... – PowerPoint PPT presentation

Number of Views:40
Avg rating:3.0/5.0
Slides: 51
Provided by: hoec
Learn more at: http://www.hep.upenn.edu
Category:

less

Transcript and Presenter's Notes

Title: Prsentation PowerPoint


1
CKM Quark Flavor Mixing
Implications of the Most Recent Results on CP
Violation and Rare Decay Searches in the B and K
Meson Systems
Andreas Höcker LAL - Orsay
FPCP Flavor Physics CP Violation
Philadelphia, Pennsylvania, USAMay 16-18, 2002
Reference for recent plots http//www.slac.stanfo
rd.edu/laplace/ckmfitter.html
2
Determining the CP-Violating CKM Phase
CP Violation (CPV) in B and K Systems CPV in
interference of decays with and without
mixing CPV in mixing CPV in interference between
decay amplitudes
?
?2
?
?1
?
?3
Neutral Bd and Bs Mixing
Precise Determination of the Matrix Elements
Vub and Vcb
Detection of Rare Decays Search for new physics
and direct CPV Determination of weak phases
3
The CKM Matrix Mass eigenstates ? Flavor
eigenstates ? Quark mixing
B and K mesons decay weakly
VCKM unitary and complex 4 real parameters
(3 angles and 1 phase)
modified couplings for
charged weak currents
?
Kobayashi, Maskawa 1973
Wolfenstein Parameterization (expansion in ?
0.2)
CPV phase
(phase invariant!)
Explicit CPV in SM, if
Jarlskog 1985
4
Many Ways Lead to the Unitarity Triangle
Point of Knowledge SM or new phases (fields)?
What is the value of in our world?
J
Rb
Rt
?
g
b
Tree
Loop (mixing)
5
The CKM Matrix Impact of non-B Physics
(?) Observables may also depend on ? and A - not
always explicitly noted
NA48
6
The CKM Matrix Present Impact of B Physics
(?) Observables may also depend on ? and A - not
always explicitly noted
7
Extracting the CKM Parameters
Constraints on theoretical parameters
Measurement
xexp
Theoretical predictions
Xtheo(ymodel
, yQCD)
ytheo
yQCD(BK,fB,BBd, )
?2 2 lnL(ymodel) L(ymodel) Lexp xexp
xtheo(ymodel) ? Ltheo(yQCD)
xexp
Assumed to be Gaussian
 Guesstimates 
Frequentist Rfit
Bayesian
Uniform likelihoods Ranges
Probabilities
8
Three Step CKM Analysis
fit package
Test New Physics
Metrology
Probing the SM Test Goodness-of-fit
  • If CL(SM) good
  • Obtain limits on New Physics parameters
  • If CL(SM) bad
  • Hint for New Physics ?!
  • Define
  • ymod a µ
  • ?, ?, A,?,yQCD,...
  • Set Confidence Levels in
  • a space, irrespective of
  • the µ values
  • Fit with respect to µ
  • ?²min µ (a) minµ ?²(a, µ)
  • ??²(a)?²min µ(a)?²minymod
  • CL(a) Prob(??²(a), Ndof)
  • Evaluate global minimum
  • ?²minymod(ymod-opt)
  • Fake perfect agreement
  • xexp-opt xtheo(ymod-opt)
  • generate xexp using Lexp
  • Perform many toy fits ?²min-toy(ymod-opt)
    ? F(?²min-toy)

AH, H. Lacker, S. Laplace, F. Le Diberder EPJ C21
(2001) 225, hep-ph/0104062
9
Inputs Before FPCP02 (status Moriond 2002)
  • Vud 0.97394 ? 0.00089 neutron nuclear
    ? decay
  • Vus 0.2200 ? 0.0025 K ? ? l?
  • Vcd 0.224 ? 0.014
    dimuon production ?N (DIS)
  • Vcs 0.969 ? 0.058 W ? XcX (OPAL)
  • Vub (4.08 ? 0.61 ? 0.47) ?103 LEP
    inclusive
  • Vub (4.08 ? 0.56 ? 0.40) ?103 CLEO
    inclusive moments b?sg
  • Vub (3.25 ? 0.29 ? 0.55) ?103 CLEO
    exclusive
  • ? product of likelihoods
    for ?Vub?
  • Vcb (40.4 ? 1.3 ? 0.9) ?103
    Excl./Incl.CLEO Moment Analysis
  • ?K (2.271 ? 0.017) ?103 PDG 2000
  • ?md (0.496 ? 0.007) ps1
    BABAR,Belle,CDF,LEP,SLD (2002)
  • ?ms Amplitude Spectrum02 LEP, SLD, CDF
    (2002)
  • sin2? 0.78 ? 0.08 WA, Updates Moriond02
    BABAR

  • and Belle included
  • mt(MS) (166 ? 5) GeV/c2 CDF, D0, PDG 2000
  • fBd?Bd (230 ? 28 ? 28) MeV Lattice 2000
  • ? 1.16 ? 0.03 ? 0.05 Lattice 2000
  • BK 0.87 ? 0.06 ? 0.13 Lattice 2000

Tree process ? no New Physics
Standard CKM fit in hand of lattice QCD
10
B0B0 Mixing
Effective FCNC Processes (CP conserving)
whose oscillation frequencies ?md/s are computed
by
Perturbative QCD
CKM Matrix Elements
Lattice QCD (eff. 4 fermion operator)
Important theoretical uncertainties
Improved error from ?ms measurement
11
Using ?ms
Experimental error
gt 5 CL
gt 5 CL

SM fit
SM fit
Improvement from ?ms limit
Theoretical uncertainty
Waiting for a ?ms measurment at Tevatron...
12
Probing the Standard Model
Test of goodness-of-fit
Toy MC ?2 distribution

?2min
Confidence Level of Standard Model CL(SM) 57
13
Metrology (I)
Standard Constraints (not including sin2?)
Region of gt 5 CL
14
Metrology (I)
Standard Constraints (not including sin2?)
A TRIUMPH FOR THE STANDARD MODEL AND THE KM
PARADIGM !
KM mechanism most probably dominant source of CPV
at EW scale
15
Metrology (I)
Standard Constraints (including sin2?)
sin2? already provides one of the most precise
and robust constraints
  • How to im-prove these con-straints?
  • How to mea-sure the missing angles ?

...
16
Metrology (II) the sin(2?) - sin(2? ) Plane
Standard Constraints (not including sin2?)
Be aware of ambiguities !
17
Metrology (II) the sin(2? ) - ? Plane
Standard Constraints (not including sin2?)
18
Metrology (III) Selected Numerical Results
CKM and UT Parameters
Rare Branching Fractions
Theory Parameters(?)
(?) Without using a priori information
19
Constraint from Rare Kaon Decays K? ? ??
Buchalla, Buras, Nucl.Phys. B548 (1999) 309
charm contribution
top contribution
ellipse
Main theoretical uncertainty comes from charm
contribution
Experiment
Two events observed at BNL (E787), yielding
E787 (BNL-68713) hep-ex/0111091
20
Constraint from Rare Kaon Decays K? ? ??
At present dominated by experimental errors.
However uncertainties on
Vcb4?8A4 will become important for constraints
in the ?-? plane
21
Rare Charmless B Decays
We distinguish two Categories
Box
  • Semileptonic (FCNC) and radiative decays
  • (GF)2? increased compared to loop-induced non-
    radiative decays ? (GF ?)2
  • Sensitive sondes for new physics
    (SUSY, right-handed couplings, ...)
  • Determination of Vtd and Vts
  • Determination of HQET parameters
  • Search for direct CP asymmetry
  • Hadronic b ? u(d) decays
  • Measurement of CPV
  • Determination of UT angles ? and ?
  • Test der B decay dynamics (Factorization)

Penguin
Tree
22
Radiative B Decays
The ratio of the rates B ? ?? to B ? K? can be
predicted more cleanly than the individual
rates determines Vtd
Ali, Parkhomenko, EPJ C23 (2002) 89 see also
Bosch,
Buchalla, NP B621 (2002) 459
For demonstrating purpose only
Rough estimate of the theoretical uncertainties !
23
Charmless B Decays into two Pseudoscalars
Constraining ? and ? ?!
24
B ? K? and the Determination of ?
Interfering contributions of tree and penguin
amplitudes
Potential for significant direct CPV
CP averaged BRs and measurements of direct CPV
determine the angle ?
Fleischer, Mannel (98) Gronau, Rosner, London
(94, 98) Neubert, Rosner (98) Buras, Fleischer
(98) Beneke, Buchalla, Neubert, Sachrajda
(01) Keum, Li, Sanda (01) Ciuchini et al.
(01) ...list by far not exhaustive!
  • Theoretical analysis deals with
  • SU(3) breaking
  • Rescattering (FSI)
  • EW penguins
  • The tool is QCD Factorization...

? see contributions at this conference
  • ... based on Color Transparancy
  • Large energy release
  • soft gluons do not interact with small qq-bar
    color dipole of emitted mesons
  • non-fact. contributions are calculable in pQCD
    perfect for mb ??.
  • Higher order corrections (?QCD/mb)

Soft scattering
Vertex corr., penguins
Hard scattering (pQCD)
25
Branching Fractions for B ? ?? /K?
Updated Belle (La Thuile02) Updated BABAR
(Moriond EW02)
World average
BABAR up to 56 fb1
CLEO 9 fb1
Belle 32 fb1
5.4 ? 0.7 ? 0.4
5.1 ? 1.1 ? 0.4
5.17 ? 0.62
17.8 ? 1.1 ? 0.8
21.8 ? 1.8 ? 1.5
18.6 ? 1.1
lt 1.1 (90)
lt 0.5 (90)
5.9 ? 1.4
5.1 ? 2.0 ? 0.8
7.0 ? 2.2 ? 0.8
11.5 ? 1.5
10.8 ? 2.1 ? 1.0
12.5 ? 2.4 ? 1.2
18.2 ? 3.3 ? 2.0
18.8 ? 3.0 ? 1.5
8.2 ? 3.1 ? 1.2
7.7 ? 3.2 ? 1.6
8.9 ? 2.3
lt 5.7 (90)
lt 5.6 (90)
lt 3.4 (90)
Agreement among experiments. Most rare decay
channels discovered
26
Direct CP Asymmetries in K? Modes
BABAR
BABAR Moriond02
ACP(K?) 0.05 ? 0.06 ? 0.01 ACP(K?0)
0.00 ? 0.18 ? 0.04 ACP(K0?) 0.21 ? 0.18 ?
0.03
Belle
BELLE La Thuile02
ACP(K?) 0.06 ? 0.08 ? 0.08 ACP(K?0)
0.04 ? 0.19 ? 0.03 ACP(K0?) 0.46 ? 0.15 ? 0.02
CLEO
CLEO PRL 85 (2000) 525
-1
ACP(K?) 0.04 ? 0.16 ACP(K?0) 0.29 ?
0.23 ACP(K0?) 0.18 ? 0.24
Are annihilation contributions important?
World averages
Agreement among experiments. No significant
deviation from zero.
ACP(K?) 0.05 ? 0.05 ACP(K?0) 0.09 ?
0.12 ACP(K0?) 0.18 ? 0.10
27
Bounds on ?
Ratios of CP averaged branching fractions can
lead to bounds on ?
Fleischer, Mannel PRD D57 (1998) 2752
FM bound
? no constraint
lt 1 ?
Buras, Fleischer EPJ C11 (1998) 93
BF bound
? 1 ?
? no constraint
Neubert, Rosner PL B441 (1998) 403
NR bound
? no constraint
? 1 ?
See also recent Bayesian analysis Bargiotti et
al. hep-ph/0204029
28
Neubert-Rosner Bound
Tree
a)
Penguin
b)
QCD FA small relative strong phases
a)
b)
29
CP Violation in B0 ? ?? Decays
ratio of amplitudes
CP eigenvalue
Tree diagram
Penguin diagram
For a single weak phase (tree)
For additional phases
? ? 1 ? must fit for direct CP Im (?) ?
sin(2?) ? need to relate asymmetry to ?
C?? 0, S?? sin(2?)
C?? ? 0, S?? sin(2?eff)
30
sin(2?eff) Gronau-London Isopin Analysis
Using the BRs ??, ??0, ?0?0 (limit)
and the CP asymmetries ACP(??0) , S?? ,
C?? and the amplitude relations
sign convention changed!
BABAR
Belle
?2min0.7
?2min2.8
31
BABAR sin(2?eff) Theory (QCD FA)
QCD FA (BBNS)
Input S?? C?? sin(2?WA)
Input S?? C??
32
Belle sin(2?eff) Theory (QCD FA)
Zoom
Input S?? C??
Input S?? C??
33
The Reverse sin(2?eff , 2? ) SM fit ? THEORY
  • The theory provides tree und penguin
    contributions and their relative phases
  • The global fit determines the agreement between
    experiment and theory, using all measured BRs and
    CP asymmetries (also time-dependent)
  • Determine also the free parameters of the
    theory (i.e., the CKM elements)

GR Gronau, Rosner, Phys.Rev.D65013004,2002 BBNS
Beneke et al., Nucl.Phys.B606245-321,2001
34
BABAR / Belle
Where are we today What brings the future ?
35
The Standard Model holds the castle
We know the center already quite well but it is
too large!
A better understan-ding of long distan-ce QCD
opens the shrine to a full ex-ploitation of the
huge data samples currently produced at KEKB and
PEPII.
...and the incredible data quantities that will
be produced at the Tevatron LHC
36
And in the far future ?
In 2010 we will need a zoom, to see the overlap
region...
37
And in the far future ?
Will there still be an overlap region ? v
38
And in the far future ?
... maybe we can es-tablish new physics before
the LHC finds it ???
39
Backup Material
40
Using ?ms
?ms not yet measured. How to use the available
experimental inform.?
Amplitude spectrum LEP/SLD/CDF
Following a presentation of F. Le Diberder at the
CERN CKM workshop (Feb. 02)
  • compute the expected PDF for the
  • current prefered value
  • compute the CL
  • infer an equivalent ?2

Preferred value 17.2 ps-1
41
Determination of the Matrix Elements Vcb and
Vub
1/mQ
Symmetry of heavy quarks SU(2nQ) in the limit
mQ?? of a Qq system, the heavy quark represents a
static color source with fixed 4-momentum. The
light degrees of freedom become insensitive to
spin and flavor of the quark.
1/?QCD
Compton wavelength
For both, Vcb and Vub, exist exclusive and
inclusive semileptonic approaches. The
theoretical tools is Heavy Quark Effective Theory
(HQET) and the Operator Product Expansion (OPE)
  • Vub (? ?2?2) is important for the SM
    prediction of sin(2?)
  • Vcb (? A) is crucial for the interpretation
    of kaon decays (?K, BR(K????), )

42
Exclusive Semileptonic B?D?l? Decays
  • Measurement of rate as fct.
    of momentum transition ?
  • Determination of Vcb from extrapolation to ?
    ?1 (theory is most restrictive)

Bigi, Uraltsev Neubert ... Lattice QCD
? 1
Belle
? 1.5
in B rest system is ? ?(D?)
Belle, PLB 526, 247 (2002)
43
Inclusive Semileptonic B?Xc l? Decays
  • OPE expansion of decay rate in
    und
  • Model-independent results for sufficiently
    inclusive observables

Bigi, Shifman, Uraltsev Hoang, Ligeti, Manohar
  • Identify by tagging
    one of the Bs
  • Full reconstruction of the high energetic lepton
  • Select leptons from the semileptonic decay of
    the other B

Experimental strategy
Fast e right-sign
Cascade e wrong-sign
44
BABAR
BR(B?X l(e)?)
BABAR (10.82 ? 0.21 ? 0.38) Belle
(10.86 ? 0.14 ? 0.47) CLEO (10.49 ? 0.17
? 0.43) LEP (10.65 ? 0.23
) ARGUS ( 9.7 ? 0.5 ? 0.4 )
BABAR preliminär
z.B. Vcb(BABAR) ? (40.8 ?1.7 ?1.5)?103
0.1
?1
A promising approach for a theoretically improved
analysis is the combined fit of the HQET
parameters ? und ?1 (CLEO) by means of b ? s?.
Allows to test Quark-Hadron Duality. (See also
spectral moments analysis of hadronic Tau decays).
0
0.1
0.2
0.3
0.4
Vcb(CLEO) ? (40.4 ?1.3)?103
0.5
CLEO, Phys. Rev. Lett. 87, 251808 (2001)
45
Vub from exclusive Decays (I)
Pure tree decay. The decay rate is proportional
to the CKM element Vub2
Problem form factor is model dependent
46
Vub from exclusive Decays (II)
CLEO
BABAR
other b?ul?
b?cl? und andere
cross feed
stat
mod
sys
CLEO, Phys.Rev.D61052001,2000 BABAR preliminary
(Moriond02)
47
Vub from inclusive Decays
CLEO
Suppression of the dominant charm background by
cutting on the B ?Xul? lepton momentum beyond the
kinematic limit of B ?Xcl?
Problem strong model dependence of Vub
B ? Xs ?
Reduction of model dependence by using HQE and
the shape function measured in B ? Xs ?
CLEO, hep-ex/0202019
gt 5 CL
stat
fu
HQE
1/mb
SM fit
Possible violation of quark-hadron duality?
Measurement of the whole spectrum (? Theorie
under control) B ?Xul? (Neural Net for Signal)
LEP B Working group
exp
b?u
HQE
?b
b?c
Knowledge of b ?c background, incl. measurement ?
48
BR(B ? ?? /K?) ACP Theory (QCD FA)
Beneke, Buchalla, Neubert, Sachrajda (BBNS)
Nucl.Phys.B606245-321,2001
  • Theoretical uncertainties
  • ms, mc, ?B, R?K
  • Renorm. scale ?
  • Gegenbauer moms
  • a1(K), a2(K), a2(?)
  • F(B??), fB
  • XH, XA

This means error estimation not
settled yet !!!
49
Frequentist Approach Rfit
the package
Three main analysis steps
AH, H. Lacker, S. Laplace, F. Le Diberder EPJ C21
(2001) 225, hep-ph/0104062
Test New Physics
Metrology
Probing the SM Test Goodness-of-fit
  • If CL(SM) good
  • Obtain limits on New Physics parameters
  • If CL(SM) bad
  • Hint for New Physics ?!
  • Define
  • ymod a µ
  • ?, ?, A,?,yQCD,...
  • Set Confidence Levels in
  • a space, irrespective of
  • the µ values
  • Fit with respect to µ
  • ?²min µ (a) minµ ?²(a, µ)
  • ??²(a)?²min µ(a)?²minymod
  • CL(a) Prob(??²(a), Ndof)
  • Evaluate global minimum
  • ?²minymod(ymod-opt)
  • Fake perfect agreement
  • xexp-opt xtheo(ymod-opt)
  • generate xexp using Lexp
  • Perform many toy fits ?²min-toy(ymod-opt)
    ? F(?²min-toy)

50
And in the far future ?
In 2010 we will need a zoom, to see the overlap
region...
Will there still be an overlap region ? v
... maybe we can es-tablish new physics before
the LHC finds it ???
Write a Comment
User Comments (0)
About PowerShow.com