Prsentation PowerPoint - PowerPoint PPT Presentation

About This Presentation
Title:

Prsentation PowerPoint

Description:

Representing Higher Order. Vector Fields Singularities ... Subdivision simplex. 2D. Subdivision simplex. 2D. A variant the side-vertex interpolation [Nielson79] ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 30
Provided by: wanch
Learn more at: http://vis.computer.org
Category:

less

Transcript and Presenter's Notes

Title: Prsentation PowerPoint


1
Representing Higher Order Vector Fields
Singularities on Piecewise Linear Surfaces
Wan Chiu Li Bruno Vallet Nicolas Ray Bruno Lévy
IEEE Visualization 2006 Baltimore,
USA alice.loria.fr
2
Outline
  • Introduction
  • Discrete representation
  • Singularities
  • Encoding an existing vector field
  • LIC-based visualization
  • Conclusion

3
Introduction
  • What is a vector field singularity ?
  • It is a 0 of the field
  • How can we characterize singularities ?
  • By their index

?
d?
-1
1
4
Introduction
  • What is a vector field singularity ?
  • It is a 0 of the field
  • How can we characterize singularities ?
  • By their index

?
d?
-2
2
5
Introduction
How can we visualize a singularity ? Piecewise
linear methods index?-val/21, val/21
Tricoche00
6
Introduction
How can we visualize a singularity ? Piecewise
linear methods index?-val/21, val/21 Higher
order singularities index?Z
7
Introduction
  • Basic idea
  • 2D vectors are complex rei?
  • Interpolate r and ?
  • Justification
  • Singularity (r 0, ? undefined)
  • Singularity index depend only on ? in neighborhood

8
Discrete representation
  • On triangulated meshes
  • Dual vertex-edge encoding using polar
    coordinates
  • Dual vertices norm r ?R, angle ? ?R
  • Dual edges period jump p ? Z
  • 3 Step interpolation (0D, 1D, 2D)
  • Dual verticesFacet centers (0D)
  • Dual edges (1D)
  • Subdivision simplex (2D)

9
0D
r(v)
?(v)
v
x(v)
  • ?(v) measured from a reference vector x(v)
  • r(v) vector norm, basis independent

10
1D
v
?(v)
P
v
x(v)
e
?(v)
x(v)
Linear interpolation
?(P) ?(v) ??(e)?(e)t
?(e) height ratio, ??(e) angular
variation along e
11
1D
v
?(v)
v
P
x(v)
e
?(v)
x(v)
Linear interpolation
?(P) ?(v) ??(e)(1-?(e))t
?(e) height ratio, ??(e) angular
variation along e
12
1D
v
Height ratio ?(e) h/H 1-?(e) h/H
e
h
H
h
v
13
1D
Angular variation along e
Period Jump
??(e) ?d? ?(B) - ?(A) 2 p p(e)
e
B
p(e) -1
e
A
B
p(e) 0
e
A
B
p(e) 1
e
A
14
1D
15
2D
Subdivision simplex
16
2D
Subdivision simplex
17
2D
  • A variant the side-vertex interpolation
    Nielson79
  • Linear along the side
  • Constant along a side-vertex path (side value)

side
P
P
vertex
18
Singularities
  • Singularities may occur only at vertices
  • Singularity index depends only on period jumps
  • I(v) ?d? I0(v) ? p(e)

e??f
?f
f
v
19
Singularities
  • Advantages
  • Control over placement and index of singularities
  • Coherent with Poincare-Hopf index theorem
  • Index independent of the valence
  • Easy extension to fractional indices

20
Extension to fractional indices
  • Fractional indices appear in N-symmetry vector
    fields
  • Not vectors but equivalence class of vectors by
    N
  • uNv ? ?k uR(v, 2kp/N)
  • Period jump and Indices are multiples of 1/N

-1/2
1/2
21
Extension to fractional indices
  • Fractional indices appear in N-symmetry vector
    fields
  • Not vectors but equivalence class of vectors by
    N
  • uNv ? ?k uR(v, 2kp/N)
  • Period jump and Indices are multiples of 1/N

-1/4
1/4
22
Encoding an Existing Vector Field
  • r(v) norm of the vector at facet center v
  • ?(v) choose one of the 3 edges and compute
    angle
  • 2pp(e)??(e) - ?(x(v), x(v)) - ?(v)
    ?(v)
  • Requires an interpolation or an analytic form

vxdvy vydvx
?? ?d? ?
v2
e
e
23
Encoding an Existing Vector Field
?? ?d? ? (vxdvy vydvx) / v2
e
e
d?
v
v
e
24
LIC-based Visualization
  • GPU accelerated
  • Works in image space
  • 3 passes

Laramee et. al. 03 Van Wijk 03
Ensure geometric discontinuity (in depth buffer)
Line integral convolution (in image space)
Direction on the surface (in fragment shader)
25
Results
Index -3
Index 5
26
Results
27
Conclusion
  • Dual vertex-edge encoding
  • 3 steps interpolation
  • A very good candidate for visualizing non-linear
    vector fields on piecewise linear surfaces or 2d
    meshes.
  • Efficient and simple way to visualize arbitrary
    singularities
  • Easy generalization to fractional indices
  • Easier particularization to 2d fields

28
Future work
  • Smooth non singular vertices
  • Topological operations
  • Trace streamlines
  • Extension to 3d vector fields

29
alice.loria.fr
Questions ?
Write a Comment
User Comments (0)
About PowerShow.com