Title: KONSEP DASAR TERMODINAMIKA
1KONSEP DASAR TERMODINAMIKA
- AGUS HARYANTO
- FEBRUARI 2010
2THERMO vs. HEAT TRANSFER
- Thermodynamics stems from the Greek words therme
(heat) and dynamis (power or motion), which is
most descriptive of the early efforts to convert
heat into power. Today thermodynamics is broadly
interpreted to include all aspects of energy and
energy transformations, including power
generation, refrigeration, and relationships
among the properties of matter. - Heat transfers the science that deals with the
determination of the rates of such energy
transfer.
3THERMO vs. HEAT TRANSFER (cont)
- Thermodynamics membicarakan sistem keseimbangan
(equilibrium), bisa digunakan untuk menaksir
besarnya energi yang diperlukan untuk mengubah
suatu sistem keseimbangan, tetapi tidak dapat
dipakai untuk menaksir seberapa cepat (laju)
perubahan itu terjadi karena selama proses sistem
tidak berada dalam keseimbangan. - Heat Transfer tidak hanya menerangkan bagaimana
energi itu dihantarkan, tetapi juga menaksir laju
penghantaran energi. Inilah yang membedakan Heat
Transfer dengan thermodinamika.
4APLIKASI
- Tubuh manusia
- Meniup kopi panas
- Perkakas elektronik (sirip, heat sink)
- Refrigerator (AC, Kulkas)
- Mobil (siklus engine, sirip, radiator)
- Pembangkit listrik (turbin, boiler)
- Industri (penyulingan, pendinginan, pengeringan,
dll).
5DIMENSI dan SATUAN
- Dimensi (M,L,T,?) ? homogen
- Satuan SI Units (m, s, kg, K)
- Kesalahan umum
- 1. Tidak paham
- 2. Usaha minimal, kurang latihan
- 3. Tidak terampil melakukan konversi satuan
- Trik perhitungan harus menyertakan satuan
6SECONDARY UNITS
- Secondary units can be formed by combinations of
primary units. Example
7SISTEM vs. LINGKUNGAN
- A system is defined as a quantity of matter or a
region in space chosen for study. - The mass or region outside the system is called
the surroundings. - The real or imaginary surface
that separates the system from
its surroundings is called the
boundary
8OPEN vs. CLOSSED SYSTEMS
- Closed system ( control mass) Mass cant cross
the boundary, but energy can. - Volume of a closed system may change.
- Special case, if no energy cross the boundary,
that system is called an isolated system.
9CLOSSED SYSTEM
A closed system with a moving boundary.
10OPEN vs. CLOSSED SYSTEMS
- Open system ( control volume) is a properly
selected region in space. It usually encloses a
device that involves mass flow such as a
compressor, turbine, or nozzle. - Both mass and energy can cross the boundary of a
control volume. - The boundaries of a control volume are called a
control surface, and they can be real or
imaginary.
11OPEN SYSTEM
12OPEN SYSTEM
Open system ( control volume) with one inlet and
one outlet (exit) and a real boundary.
13SIFAT-SIFAT SISTEM
- Any characteristic of a system is called a
property. - Some familiar properties are pressure P,
temperature T, volume V, and mass m. The list can
be extended to include less familiar ones such as
viscosity, thermal conductivity, modulus of
elasticity, thermal expansion coefficient,
electric resistivity, and even velocity and
elevation. - Intensive properties are those that are
independent of the mass of a system, such as
temperature, pressure, and density. - Extensive properties are those whose values
depend on the sizeor extentof the system. - Extensive properties per unit mass are called
specific properties (specific volume (v V/m),
specific energy (e E/m).
14SIFAT INTENSIF vs. EKSTENSIF
TUGAS (dikumpul Senin) Sebuah apel dibelah dua.
Buatlah daftar sifat intensif dan ekstensifnya
Criterion to differentiate intensive and
extensive properties.
15SIFAT-SIFAT SISTEM PENTING
- Densitas atau massa jenis masa per satuan volume
- Volume spesifik, kebalikan dari densitas volume
per satuan masa (m3/kg) - Densitas relatif atau specific gravity nisbah
densitas suatu substansi dengan densitas
substansi standar pada suhu tertentu (biasanya
air pada 4oC di mana ? 1000 kg/m3)
16ENERGY SISTEM TERMODINAMIKA
- BENTUK ENERGI
- 1. Energi Kinetik (KE) ?
-
- 2. Energi Potensial (PE) ? PE mgh
- 3. Energi dakhil atau Internal Energy (U)
- ENERGI TOTAL
- E U KE PE
- e u ke pe (per satuan massa)
17POSTULAT KEADAAN
- All properties (can be measured or calculated)
completely describes the condition, or the state,
of the system. At a given state, all the
properties of a system have fixed values. If the
value of even one property changes, the state
will change to a different one. - The number of properties required to fix the
state of a system is given by the state
postulate - The state of a simple compressible system is
completely specified by two independent,
intensive properties.
18PROSES dan SIKLUS
- Any change that a system undergoes from one
equilibrium state to another is called a process - The series of states through which a system
passes during a process is called the path
(lintasan) of the process.
19MACAM-MACAM PROSES
- Proses isotermal proses pada suhu T konstan.
- Proses isobaris proses pada tekanan P konstan.
- Proses isokhoris (isometris) proses pada volume
spesifik ? konstan. - Proses adiabatik proses di mana tidak terjadi
pertukaran kalor dengan lingkungan. - Proses isentropik proses pada entropi S konstan.
20STEADY-FLOW PROCESS
- The terms steady and uniform are used frequently
in engineering, and thus it is important to have
a clear understanding of their meanings. - The term steady implies no change with time.
- The opposite of steady is unsteady, or transient.
- The term uniform, however, implies no change with
location over a specified region.
21PROSES dan SIKLUS
- A system undergoes a cycle if it returns to its
initial state at the end of the process.
22TEKANAN
- Tekanan (P) gaya (F) per satuan luas (A).
- Satuan tekanan adalah pascal (Pa) N/m2.
- Untuk benda padat gaya per luas satuan tidak
disebut tekanan, tetapi tegangan (stress). - Untuk fluida diam, tekanan adalah sama ke segala
arah. - Tekanan di dalam fluida meningkat sesuai dengan
kedalamannya akibat berat fluida (pengaruh
gravitasi) sehingga fluida pada bagian bawah
menanggung beban yang lebih besar daripada fluida
di bagian atas. - Tetapi tekanan tidak bervariasi pada arah
horisontal. - Tekanan gas di dalam tangki dapat dianggap
seragam karena berat gas terlalu kecil dan tidak
mengakibatkan pengaruh yang berarti.
23TEKANAN UKUR, ATM, VAKUM
- Tekanan aktual pada posisi tertentu disebut
tekanan absolut dan diukur secara relatif
terhadap tekanan vakum, yaitu tekanan nol mutlak.
- Kebanyakan pengukur tekanan dikalibrasi untuk
membaca nol di atmosfer (tekanan atmosfer lokal).
- Perbedaan tekanan absolut dan tekanan atmosfer
disebut tekanan ukur (pressure gage). - Tekanan di bawah tekanan atmosfer disebut tekanan
vakum (vacuum pressure) dan diukur dengan
pengukur vakum yang menunjukkan perbedaan antara
tekanan atmosfer dan tekanan absolut. - Pgage Pabs Patm (untuk P gt Patm)
- Pvac Patm Pabs (untuk P lt Patm)
24TEKANAN UKUR, TEKANAN ATMOSFER, TEKANAN VAKUM
25PENGUKUR TEKANAN
MANOMETER
BAROMETER
26PRINSIP MANOMETER
- Perhatikan gambar
- Seimbang ??F 0
- P1 P2
- A P1 A Patm W
- di mana W m g ? V g ? A h g
- P1 Patm ? h g
- ?P P1 - Patm ? h g
Tekanan ukur di dalam tangki
27EXAMPLE Manometer
- A manometer is used to measure the pressure in a
tank. The fluid used has a specific gravity of
0.85, and the manometer column height is 55 cm,
as shown in Figure. If the local atmospheric
pressure is 96 kPa, determine the absolute
pressure within the tank.
28EXAMPLE SOLUTION
29EXAMPLE MULTIFLUID MANOMETER
Water in a tank is pressurized by air, and the
pressure is measured by a multifluid manometer
(see Figure). The tank is located on a mountain
at an altitude of 1400 m where the atmospheric
pressure is 85.6 kPa. Determine the air pressure
in the tank if h1 0.1 m, h2 0.2 m, and h3
0.35 m. Take the densities of water, oil, and
mercury to be 1000 kg/m3, 850 kg/m3, and 13,600
kg/m3, respectively.
30SOLUTION
31APLIKASI MANOMETER
Measuring the pressure drop across a flow section
or a flow device by a differential manometer
- P1 ?1g(a h) - ?2gh - ?1ga P2
- P1 - P2 (?2 - ?1)gh
- Untuk ?2 gtgt ?1
- P1 - P2 ?2 g h
32BAROMETER Torricelli
Patm ? g h
33EXAMPLE3 BAROMETER
- Determine the atmospheric pressure at a location
where the barometric reading is 740 mm Hg and the
gravitational acceleration is g 9.81 m/s2.
Assume the temperature of mercury to be 10oC, at
which its density is 13,570 kg/m3.
34EXAMPLE3 SOLUTION
35TEKANAN ATMOSFER
ELEVASI (m) TEKANAN (kPa) TEKANAN (mmHg)
0 (sea level) 101.325 760.00
1000 89.88 674.15
2000 79.50 596.30
5000 54.05 405.41
10,000 26.5 198.77
20,000 5.53 41.48
Rule of thumb naik 10 m, tekanan atmosfer turun
1 mmHg
36EFEK KETINGGIAN
37TEMPERATURE
- Thermodinamika ? SUHU MUTLAK
- Satuan kelvin (K) untuk SI
- Satuan renkine (R) untuk USCS
Konversi T(K) T(oC) 273.15 T(R) T(oF)
456.67 T(oC) 1.8T(oC) 32 T(R) 1.8 T(K)
CAUTION ?T(K) ?T(oC) ?T(R) ?T(oF)
38EXAMPLE4 TEMPERATURE
- During a heating process, the temperature of a
system rises by 10C. Express this rise in
temperature in K, F, and R.
39PR
- Soal No 1-6C, 1-7C, 1-15C, 1-16C, 1-17C, 1-20C,
1-21C, 1-22C, 1-23C, 1-24C, 1-29, 1-31, 1-34C,
1-35C, 1-36C, 1-39C, 1-40, 1-42, 1-43, 1-44,
1-45, 1-48, 1-51, 1-53, 1-55, 1-57, 1-59, 1-61,
1-62, 1-63, 1-65, 1-66, 1-73, 1-85, 1-88, 1-101,
1-103, 1-105, 1-106, 1-108, 1-120, 1-121,
1-122, 1-123, 1-125. - Kelompok THERMO
- Kelompok DYNAMICS