Guerino Mazzola - PowerPoint PPT Presentation

About This Presentation
Title:

Guerino Mazzola

Description:

Global Networks in Computer Science? Guerino Mazzola U & ETH Z rich guerino_at_mazzola.ch www.encyclospace.org – PowerPoint PPT presentation

Number of Views:81
Avg rating:3.0/5.0
Slides: 43
Provided by: Stef100
Category:

less

Transcript and Presenter's Notes

Title: Guerino Mazzola


1
Global Networks in Computer Science?
Guerino Mazzola U ETH Zürich     guerino_at_mazzola
.ch      www.encyclospace.org        
2
  • Motivation
  • Local Networks
  • Global Networks
  • Diagram Logic

3
  • Motivation
  • Local Networks
  • Global Networks
  • Diagram Logic

4
Course by Harald Gall Soft-Summer-Seminar
31.8./1.9. 2004 SW-Architekturen/Evolution Klass
ifikation von Netzwerken...
5
Perspectives of New Music (2006) Guerino Mazzola
Moreno Andreatta From a Categorical Point of
View K-nets as Limit Denotators
6
manifolds global objects in differential
geometry
7
Are there global networks?
8
  • Motivation
  • Local Networks
  • Global Networks
  • Diagram Logic

9
Digraph category of digraphs ( quivers,
diagram schemes, etc.)
?
Digraph(?, E)
10
Diagram in a category C digraph morphism
D ? ? C
  • Di objects in C
  • Dijt morphisms in C

11
  • Examples
  • diagram of sets C Set
  • diagram of topological spaces C Top
  • diagram of real vector spaces C Lin
  • diagram of automata C Automata
  • etc.

12
  • Yoneda embedding
  • Let C_at_ category of contravariant functors
    ( presheaves) F C ? Set
  • Have Yoneda embedding functor _at_ C ? C_at_
  • _at_X C ? Set A gt A_at_X C(A, X) (_at_X
    representable presheaf)

C
13
  • Category ?C of C-addressed points
  • Objects of ?C
  • x _at_A ? F, F presheaf in C_at_ x ?F(A),
    write x A ? F A address, F space
    of x
  • Morphisms of ?C
  • x A ? F, y B ? G h/? x ? y

14
Local network in C diagram x of C-addressed
points
x ? ? ?C
x ?lim(D)
x is flat if all addresses and spaces coincide.
15
Example 1 K-nets of pitch classes C Ab
abelian groups affine maps
16
Example 2 K-nets of chords C Ab
17
Example 3 K-nets of dodecaphonic series C Ab
18
Example 4 Neural Networks
19
Neural Networks C Set address Ÿ Points
x Ÿ ? nat this address are time series x
(x(t))t of vectors in n.They describe input and
output for neural networks. Dn Ÿ _at_ n
h/? x ? y
y(t) h(x(t-1))
20
(No Transcript)
21
(w,x, a?w,x?)
w
(w, x)
?w,x?
o(a?w,x?)
a?w,x?
(w,x)
x
22
Example 5 Local Networks of Automata
  • C AutomataSet S of states, alphabet A
  • Objects (e, M S ? A ? 2S)
  • Morphisms h (?, ?) (e, M S ? A ? 2S) ?
    (f, N T ? B ? 2T)

S ? A ? 2S
T ? B ? 2T
23
address A (0, M 0,1 ? ? ? 20,1 )
points x A ? (e, M S ? A ? 2S)
states s in S local network
ofA-addressed pointsIdA address change
network of states
24
Example 6 Networks of OO Instances
  • C Class classes and instances of a OO language
  • Objects classes and one special address
    I the instance (corresponds to final
    object 1)
  • Morphisms s K ? L superclass v K ? F
    field m K ? M method (without arguments) i
    I ? K instance
  • I_at_K instances of class K

_at_Class
25
Instance method in two variables F _at_K ?
_at_L (i,j)I ? F, m F ? _at_M
26
Morphisms of local networks x ? ? ?C, y E
? ?C f x ? y
category LC
f ? ? E for every vertex i of ?, there is a
morphism di xi ? yf(i)
subcategory FC
Flat morphism x, y flat and di const. h/?
27
  • Special cases
  • identity morphism Idx x ? x
  • isomorphisms f x ? y there is g y ? x
    with g8f Idx und f8g Idy, write x ? y.
  • local subnetworks Local network y E ? ?C , f
    ? ? E subdigraph, f y?? ? y embedding
    morphism.

28
  • Motivation
  • Local Networks
  • Global Networks
  • Diagram Logic

29
atlas
30
(No Transcript)
31
  • Examples
  • Local networks are global networks with one
    chart.
  • Interpretations let y E ? ?C be a local
    network and let I (?i) be a covering by
    subdigraphs ?i ? E. Build the corresponding
    subnetworks xi y ??i. Together with the
    identity on the chart overlaps, this defines a
    global network yI, called interpretation of
    y. Interpretations are interesting for the
    classification of networks by coverings of a
    given type of charts! Visualization via the
    nerve of the covering.
  • Locally flat global networks have flat charts
    and local glueing data.

32
  • Morphisms of global networks x, y over category
    C f x ? y morphisms of their digraphs,
    which induce morphisms of local networks.
  • Category GC of global networks over C.
  • Subcategory LfC of locally flat networks
    locally flat morphisms.
  • A global network is interpretable, if it is
    isomorphic to an interpretation.

Open problem Under what condition are
therenon-interpretable global networks? LfC
? X ? GC
33
Theorem Given address A in C, we have a
verification functor ? ALfCred ? AGlob
Corollary There are non-interpretable global
networks in ALfCred
COLLOQUIUM ON MATHEMATHICAL MUSIC THEORY H.
Fripertinger, L. Reich (Eds.) Grazer Math. Ber.,
ISSN 10167692 Bericht Nr. 347 (2005), Guerino
Mazzola Local and Global Limit Denotators and
the Classification of Global Compositions
34
(No Transcript)
35
Karl Pribram
36
  • Motivation
  • Local Networks
  • Global Networks
  • Diagram Logic

37
The category Digraph is a topos
D ? E
D E
DE
0 Ø
38
In particularThe set Sub(D) of subdigraphsof a
digraph D is a Heyting algebra have digraph
logic. Ergo Global networks, ANNs, Klumpenhouw
er-nets, and local/global gestures, enable
logicaloperators (?, ?, ?,?)
Subobject classifier
39
Heyting logic on set Sub(y) of subnetworks of y
h, k ? Sub(y) h ? k h ? k h ? k h ? k
h ? k (complicated) ? h h ? Ø tertium
datur h ?? h u y1 ? y2 Sub(u) Sub(y2) ?
Sub(y1) homomorphism of Heyting algebras
contravariant functor Sub LC ?
Heyting Sub GC ? Heyting complexes
40
C-major network of degrees
y 3.x 7
41
?

42
  • Describe global ANNs.
  • Can we interpret the dendritic transformations
    in the theory of Karl Pribram as being glueing
    operations of charts for global ANNs?
  • What is the gain in the construction of global
    ANNs? Is there any proper global thinking in
    such a model?
  • What can be described in OO architectures by
    global networks, that local networks cannot?
  • Was would global SW-engineering/programming mea
    n? How global are VM architectures?

43
  • Problems
  • Investigate the possible role and semantics of
    network logic in concrete contexts such as
    local/global ANNs, automata networks,
    gestures, Klumpenhouwer-nets.
  • Investigate a (formal) propositional/predicate
    language of networks with values in Heyting
    algebras of digraphs.
Write a Comment
User Comments (0)
About PowerShow.com