Guerino Mazzola - PowerPoint PPT Presentation

About This Presentation
Title:

Guerino Mazzola

Description:

The address question (ontology): What is an elementary musical ... Naturality of ... Naturality of Heyting Logic of Open Sets. ExTopB(F) ExTopA(F) .a. U ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 35
Provided by: stefan106
Category:

less

Transcript and Presenter's Notes

Title: Guerino Mazzola


1
  • Extending Set Theory to
  • Harmonic Topology
  • and Topos Logic
  • Music objects
  • Why topoi?
  • Logic
  • Guerino Mazzola
  • U ETH Zürich
  • i2musics
  • guerino_at_mazzola.ch
  • www.encyclospace.org

2
The address question (ontology) What is an
elementary musical object?
music objects
3
music objects
4
music objects
A R-module address A_at_F eF.LinR(A, F) A
R _at_F eF.Lin(, F) ª F2
x ? F affine x et.g, et translation, g
linear
5
Dodecaphonic Series
music objects
R Ÿ, A Ÿ11, F Ÿ12 A_at_F Ÿ11_at_Ÿ12 S Î
Ÿ11_at_Ÿ12 ª Ÿ1212
6
music objects
7
music objects
8
music objects
modulation S(3) T(3) cadence symmetry
9
music objects
Schönbergs Modulation Degrees
10
Circel chords (G. Mazzola, Geometrie der Töne)
c 0f e7.3
music objects
c, f(c), f2(c),... 0, 4, 7 c, e, g
major triad
lt f, c gt 1, c, f, f.c, c.f , f2.c, c2.f,... ?
Ÿ12_at_Ÿ12 lt e7.3, e0.0 gt 0, 4, 7
11
Modeling Riemann Harmony (Th. Noll, PhD Thesis)
music objects
Trans(Dt,Tc) lt fDt Tc gt ? Ÿ12_at_Ÿ12
relative consonances
12
Ÿ12 ? Ÿ3 ? Ÿ4 z gt (z mod 3, -z
mod4) 4.u3.v lt (u,v)
music objects
13
music objects
14
music objects
Ke Ÿ12e.0, 3, 4, 7, 8, 9 consonances
De Ÿ12e.1, 2, 5, 6, 10, 11 dissonances
15
music objects
Parallels of fifths are always forbidden
16
Ke, De
music objects
Trans(Dt,Tc)
Trans(Ke,Ke)
17
Prize for parametrization addresses Parametrized
objects need parametric evaluation!
music objects
18
music objects
19
series S Î Ÿ11_at_Ÿ12
music objects
More general set of k sequences of pitch classes
of length t1 K S1,S2,...,Sk This is a
polyphonic local composition K ? Ÿt_at_Ÿ12
20
music objects
s t, define affine map f Ÿs ? Ÿt e0 gt
ei(0) e1 gt ei(1) ................. es gt
ei(s)
21
Gegenstand der Untersuchungen sind aber nichtdie
Töne selbst, denn deren Beschaffenheit spieltgar
keine Rolle, sondern dieVerknüpfungen und
Verbindungender Töne untereinander. Bachs Art
of Fugue (1924)
music objects
22
Need recursive combination of constructions such
as sequences of sets of sets of curves of sets
of chords, etc. This leads to the theory of
denotators, which we omit here.
music objects
Eine kontrapunktische Form ist eine Menge von
Mengen von Mengen (von Tönen)Bachs Art of
Fugue (1924)
23
Sets cartesian products X ? Y disjoint sums X È
Y powersets XY characteristic maps c X ? 2 no
algebra
why topoi?
Mod direct products AB etc. has algebra no
powersets no characteristic maps
24
Yoneda Lemma The functorial map _at_ Mod Mod_at_
is fully faithfull. M gt _at_M
Hom(?,M) M_at_F Hom(_at_M,F)
why topoi?
25
Functorial Local Compositions
  • Are left with two important problems for local
    compositions K ? A_at_F
  • The definition of a general evaluation
    procedure
  • There are no general fiber products for local
    compositions.

why topoi?
Solution A_at_WF subfunctors a ? _at_A ? F
generalized sieves Kˆ ? _at_A ? F X_at_Kˆ (fX
A, k.f), k Î K ? X_at_A ? X_at_F
Kˆ? IdA_at_Kˆ K
26
Hugo Riemann Logik ist in der Funktionstheorie
ein fundamentaler, aber dunkler Begriff.
Classical logic F 0 zero module subsets d
? 0_at_F 0_at_0 0 Have two values d 0_at_0
T, true d ˆ F ? T, false Fuzzy
logic F S /Ÿ circle group subsets d
0, e ? 0_at_F 0_at_S This logic is known as the
Gödel algebra,in fact a Heyting algebra defined
by thetopology of these subsets.
logic
27
Have natural generalization! d ? 0_at_0 d 0, e
? 0_at_S F any space (functor)A any address d
? A_at_F objective local compositiond ? _at_A ?
F functorial local composition In this context,
local compositions d are structurally legitimate
supports of logical values and their combinations
(conjunction, disjunction, implication, negation).
logic
28
The functorial change K gt Kˆ has dramatic
consequences for the global theory!
logic
A 0Ÿ
A Ÿ12
X ? Ÿ12 gt X End(X) ? Ÿ12_at_Ÿ12
29
logic
ToM, ch. 25
30
logic
e0.4.e11.0 e11.3.e11.0 e8.0
31
Extension Topology
logic
Fix a space functor F, End(F) set of
endomorphisms of F, and an address A.
ExTopA(F) A_at_WF a ? _at_A ? F Extension
topology on ExTopA(F) Subsets M ? End(F),
Basic open sets ExtA(M) a, M ? End(a)
32
Naturality of Extension Topologies
Proposition Fix a space functor F two addresses
A, B, and a retraction a A B. Then we have
this continuous map
logic
ExTopB(F)
ExTopA(F)
33
Naturality of Heyting Logic of Open Sets
logic
U?V U?V U?V U?V U?V ? W ? U ? V W ?U
(-U)o
.a-1 (U?V) ? (.a-1 (U)? .a-1 (V)) .a-1 (U?V ?
(.a-1 (U) ? .a-1 (V)) .a-1 (U?V) ? (.a-1 (U) ?
.a-1 (V))
34
TON C, F, Bb , Eb , Ab , Db , Gb, B, E, A, D,
G Val T, S, D, t, s, d, T,S, D, t, s,
d F Chords(Ÿ12) W_at_Ÿ12 TRUTH(F) sets of
chords in F
logic
RieNT,v(Chord) dChord.Ext0(MT,v) MT,v
monoid of all endomorphisms of prototypical
triadic chords Ext0(MT,v) chords
invariant under MT,v
35
Birkhäuser 20021368 pages, hardcover incl.
CD-ROM 128. / CHF 188. ISBN
3-7643-5731-2 English
www.encyclospace.org
Write a Comment
User Comments (0)
About PowerShow.com