Title: Guerino Mazzola
1- Extending Set Theory to
- Harmonic Topology
- and Topos Logic
- Music objects
- Why topoi?
- Logic
- Guerino Mazzola
- U ETH Zürich
- i2musics
- guerino_at_mazzola.ch
- www.encyclospace.org
2The address question (ontology) What is an
elementary musical object?
music objects
3music objects
4music objects
A R-module address A_at_F eF.LinR(A, F) A
R _at_F eF.Lin(, F) ª F2
x ? F affine x et.g, et translation, g
linear
5Dodecaphonic Series
music objects
R Ÿ, A Ÿ11, F Ÿ12 A_at_F Ÿ11_at_Ÿ12 S Î
Ÿ11_at_Ÿ12 ª Ÿ1212
6music objects
7music objects
8music objects
modulation S(3) T(3) cadence symmetry
9music objects
Schönbergs Modulation Degrees
10Circel chords (G. Mazzola, Geometrie der Töne)
c 0f e7.3
music objects
c, f(c), f2(c),... 0, 4, 7 c, e, g
major triad
lt f, c gt 1, c, f, f.c, c.f , f2.c, c2.f,... ?
Ÿ12_at_Ÿ12 lt e7.3, e0.0 gt 0, 4, 7
11Modeling Riemann Harmony (Th. Noll, PhD Thesis)
music objects
Trans(Dt,Tc) lt fDt Tc gt ? Ÿ12_at_Ÿ12
relative consonances
12Ÿ12 ? Ÿ3 ? Ÿ4 z gt (z mod 3, -z
mod4) 4.u3.v lt (u,v)
music objects
13music objects
14music objects
Ke Ÿ12e.0, 3, 4, 7, 8, 9 consonances
De Ÿ12e.1, 2, 5, 6, 10, 11 dissonances
15music objects
Parallels of fifths are always forbidden
16Ke, De
music objects
Trans(Dt,Tc)
Trans(Ke,Ke)
17Prize for parametrization addresses Parametrized
objects need parametric evaluation!
music objects
18music objects
19series S Î Ÿ11_at_Ÿ12
music objects
More general set of k sequences of pitch classes
of length t1 K S1,S2,...,Sk This is a
polyphonic local composition K ? Ÿt_at_Ÿ12
20music objects
s t, define affine map f Ÿs ? Ÿt e0 gt
ei(0) e1 gt ei(1) ................. es gt
ei(s)
21Gegenstand der Untersuchungen sind aber nichtdie
Töne selbst, denn deren Beschaffenheit spieltgar
keine Rolle, sondern dieVerknüpfungen und
Verbindungender Töne untereinander. Bachs Art
of Fugue (1924)
music objects
22Need recursive combination of constructions such
as sequences of sets of sets of curves of sets
of chords, etc. This leads to the theory of
denotators, which we omit here.
music objects
Eine kontrapunktische Form ist eine Menge von
Mengen von Mengen (von Tönen)Bachs Art of
Fugue (1924)
23Sets cartesian products X ? Y disjoint sums X È
Y powersets XY characteristic maps c X ? 2 no
algebra
why topoi?
Mod direct products AB etc. has algebra no
powersets no characteristic maps
24Yoneda Lemma The functorial map _at_ Mod Mod_at_
is fully faithfull. M gt _at_M
Hom(?,M) M_at_F Hom(_at_M,F)
why topoi?
25Functorial Local Compositions
- Are left with two important problems for local
compositions K ? A_at_F - The definition of a general evaluation
procedure - There are no general fiber products for local
compositions.
why topoi?
Solution A_at_WF subfunctors a ? _at_A ? F
generalized sieves Kˆ ? _at_A ? F X_at_Kˆ (fX
A, k.f), k Î K ? X_at_A ? X_at_F
Kˆ? IdA_at_Kˆ K
26Hugo Riemann Logik ist in der Funktionstheorie
ein fundamentaler, aber dunkler Begriff.
Classical logic F 0 zero module subsets d
? 0_at_F 0_at_0 0 Have two values d 0_at_0
T, true d ˆ F ? T, false Fuzzy
logic F S /Ÿ circle group subsets d
0, e ? 0_at_F 0_at_S This logic is known as the
Gödel algebra,in fact a Heyting algebra defined
by thetopology of these subsets.
logic
27Have natural generalization! d ? 0_at_0 d 0, e
? 0_at_S F any space (functor)A any address d
? A_at_F objective local compositiond ? _at_A ?
F functorial local composition In this context,
local compositions d are structurally legitimate
supports of logical values and their combinations
(conjunction, disjunction, implication, negation).
logic
28The functorial change K gt Kˆ has dramatic
consequences for the global theory!
logic
A 0Ÿ
A Ÿ12
X ? Ÿ12 gt X End(X) ? Ÿ12_at_Ÿ12
29logic
ToM, ch. 25
30logic
e0.4.e11.0 e11.3.e11.0 e8.0
31Extension Topology
logic
Fix a space functor F, End(F) set of
endomorphisms of F, and an address A.
ExTopA(F) A_at_WF a ? _at_A ? F Extension
topology on ExTopA(F) Subsets M ? End(F),
Basic open sets ExtA(M) a, M ? End(a)
32Naturality of Extension Topologies
Proposition Fix a space functor F two addresses
A, B, and a retraction a A B. Then we have
this continuous map
logic
ExTopB(F)
ExTopA(F)
33Naturality of Heyting Logic of Open Sets
logic
U?V U?V U?V U?V U?V ? W ? U ? V W ?U
(-U)o
.a-1 (U?V) ? (.a-1 (U)? .a-1 (V)) .a-1 (U?V ?
(.a-1 (U) ? .a-1 (V)) .a-1 (U?V) ? (.a-1 (U) ?
.a-1 (V))
34TON C, F, Bb , Eb , Ab , Db , Gb, B, E, A, D,
G Val T, S, D, t, s, d, T,S, D, t, s,
d F Chords(Ÿ12) W_at_Ÿ12 TRUTH(F) sets of
chords in F
logic
RieNT,v(Chord) dChord.Ext0(MT,v) MT,v
monoid of all endomorphisms of prototypical
triadic chords Ext0(MT,v) chords
invariant under MT,v
35Birkhäuser 20021368 pages, hardcover incl.
CD-ROM 128. / CHF 188. ISBN
3-7643-5731-2 English
www.encyclospace.org