Title: Guerino Mazzola
1- Guerino Mazzola
- U ETH Zürich
- Internet Institute for Music Science
- guerino_at_mazzola.ch
- www.encyclospace.org
2- Performance Fields
- Cell Hierarchies
- Algorithms and Calculations
- Initial Performances
- Operator Typology
Contents
3Fields
4x v(X)
X
Fields
T(E) (dvE/dE)-1 q /sec
5P-Cells
Z(X) J(v )(X)-1 D performance field, defined
on cube F the frame of Z X0 I initial
set X0 ÚXZ(t) ÚXZ integral curve through X
D (1,1,,1) Const. x0 vI(X0)
initial performance x x0 - t.D
6- A Performance Cell C is a 5-tuple as follows
- a closed frame F aE,bE aH,bH ... Í
Para, Para E,H,L, finite set of
symbolic parameters - a Lipschitz-continuous performance field Z,
defined on a neighbourhood of F - a polyhedral initial set I, i.e., a finite
union of possibly degenerate simplexes of any
dimension in Para - a finite set K Í Para, the symbolic kernel,
such that every integral curve ÚXZ through X K
hits I - an initial performance map vII para
(para e,h,l, physical parameters) such
that for any X K and two points - a ÚXZ(a), b ÚXZ(b),
- vI(b) - vI(a) (a-b).D
P-Cells
7The category Cell of cells has these morphisms p
C1 C2
- we have Para2 Í Para1 p Para1 Para2
is the projection such that - p(F1) Í F2
- p(I1) Í I2
- p.vI1 vI2 .pI1
- Tp.Z1 Z2.p
P-Cells
8Morphisms induce compatible performances
P-Cells
9Product fields Tempo-Intonation field
P-Cells
10Parallel fields Articulation field
P-Cells
11- Work with
- Basis parameters E, H, L,
- and corresponding fields T(E), S(H), I(L)
- Pianola parameters D, G, C
- A cell hierarchy is a Diagram D in Cell such
that - there is exactly one root cell
- the diagram cell parameter sets are
closed under union and non-empty intersection
P-Cells
12RUBATO software Calculations via
Runge-Kutta-Fehlberg methods for numerical ODE
solutions
Calculations
13Initials
14Initials
15Initials
Closure(Space(I)) Í Space(X)
16l
Typology
Stemma
17Big Problem Describe Typology of shaping
operators!
Emotions, Gestures, Analyses
Typology
18Tempo Operators
Typology
Deformation of the articulation field hierarchy
Zw Qw(E,D).Z
Qw J(vw)-1 w-tempo
19Operator Types
Typology
The Lie Derivative Approach
v(X,Y) (x(X),y(X,Y))
vl(X,Y) (x(X),l(X).y(X,Y))
20Typology
L ln(l), DY(1,,1), eY embedding of
Y-tangent space
YL Y LX(L)C-1y-(e-L -1)C-1DYeY
21YL Y LX(L)C-1y-(e-L -1)C-1DYeY y U.Y
v C-1 U-1 L 0 YL Y LX(L)(YConst.)eY
YL Y LYX (L)(R.YC)eY eC.R Space(Y)
Space(Y)
Typology
22- The directed Lie derivative operator
construction - In the given hierarchy, choose a hierarchy
space Z - select a weight L on Z
- choose any subspace S of the root space
- select an affine directional endomorphism
Dir Î S_at_S - Given the total field Y, define the operator
- YL,Dir Y LYZ(L).Dir.eS
Typology
23Theorem For the deformation types
Typology
there is a suitable data set (Z,S,L,Dir) for the
respective cell hierarchies such that the
deformations are defined by directed Lie
derivative operators YL,Dir Y
LYZ(L).Dir.eS
method of characteristics
24RUBATO Scalar operator
Typology