Guerino Mazzola - PowerPoint PPT Presentation

About This Presentation
Title:

Guerino Mazzola

Description:

x = x0 - t.D. Z(X) = J( )(X)-1 D. performance field, ... Stemma. mother. daughter. granddaughter. l. Emotions, Gestures, Analyses. Typology. Big Problem: ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 25
Provided by: Stefan6
Category:

less

Transcript and Presenter's Notes

Title: Guerino Mazzola


1
  • Guerino Mazzola
  • U ETH Zürich
  • Internet Institute for Music Science
  • guerino_at_mazzola.ch
  • www.encyclospace.org

2
  • Performance Fields
  • Cell Hierarchies
  • Algorithms and Calculations
  • Initial Performances
  • Operator Typology

Contents
3
Fields
4
x v(X)
X
Fields
T(E) (dvE/dE)-1 q /sec
5
P-Cells
Z(X) J(v )(X)-1 D performance field, defined
on cube F the frame of Z X0 I initial
set X0 ÚXZ(t) ÚXZ integral curve through X
D (1,1,,1) Const. x0 vI(X0)
initial performance x x0 - t.D
6
  • A Performance Cell C is a 5-tuple as follows
  • a closed frame F aE,bE aH,bH ... Í
    Para, Para E,H,L, finite set of
    symbolic parameters
  • a Lipschitz-continuous performance field Z,
    defined on a neighbourhood of F
  • a polyhedral initial set I, i.e., a finite
    union of possibly degenerate simplexes of any
    dimension in Para
  • a finite set K Í Para, the symbolic kernel,
    such that every integral curve ÚXZ through X K
    hits I
  • an initial performance map vII para
    (para e,h,l, physical parameters) such
    that for any X K and two points
  • a ÚXZ(a), b ÚXZ(b),
  • vI(b) - vI(a) (a-b).D

P-Cells
7
The category Cell of cells has these morphisms p
C1 C2
  • we have Para2 Í Para1 p Para1 Para2
    is the projection such that
  • p(F1) Í F2
  • p(I1) Í I2
  • p.vI1 vI2 .pI1
  • Tp.Z1 Z2.p

P-Cells
8
Morphisms induce compatible performances
P-Cells
9
Product fields Tempo-Intonation field
P-Cells
10
Parallel fields Articulation field
P-Cells
11
  • Work with
  • Basis parameters E, H, L,
  • and corresponding fields T(E), S(H), I(L)
  • Pianola parameters D, G, C
  • A cell hierarchy is a Diagram D in Cell such
    that
  • there is exactly one root cell
  • the diagram cell parameter sets are
    closed under union and non-empty intersection

P-Cells
12
RUBATO software Calculations via
Runge-Kutta-Fehlberg methods for numerical ODE
solutions
Calculations
13
Initials
14
Initials
15
Initials
Closure(Space(I)) Í Space(X)
16
l
Typology
Stemma
17
Big Problem Describe Typology of shaping
operators!
Emotions, Gestures, Analyses
Typology
18
Tempo Operators
Typology
Deformation of the articulation field hierarchy
Zw Qw(E,D).Z
Qw J(vw)-1 w-tempo
19
Operator Types
Typology
The Lie Derivative Approach
v(X,Y) (x(X),y(X,Y))
vl(X,Y) (x(X),l(X).y(X,Y))
20
Typology
L ln(l), DY(1,,1), eY embedding of
Y-tangent space
YL Y LX(L)C-1y-(e-L -1)C-1DYeY
21
YL Y LX(L)C-1y-(e-L -1)C-1DYeY y U.Y
v C-1 U-1 L 0 YL Y LX(L)(YConst.)eY
YL Y LYX (L)(R.YC)eY eC.R Space(Y)
Space(Y)
Typology
22
  • The directed Lie derivative operator
    construction
  • In the given hierarchy, choose a hierarchy
    space Z
  • select a weight L on Z
  • choose any subspace S of the root space
  • select an affine directional endomorphism
    Dir Î S_at_S
  • Given the total field Y, define the operator
  • YL,Dir Y LYZ(L).Dir.eS

Typology
23
Theorem For the deformation types
Typology
there is a suitable data set (Z,S,L,Dir) for the
respective cell hierarchies such that the
deformations are defined by directed Lie
derivative operators YL,Dir Y
LYZ(L).Dir.eS
method of characteristics
24
RUBATO Scalar operator
Typology
Write a Comment
User Comments (0)
About PowerShow.com