Title: Dario Pasini
1Cyclopolymerization as a Tool for the Synthesis
of Functional Macromolecular Materials
Dario Pasini Department of Organic
Chemistry University of Pavia, Italy 13th
International IUPAC Conference on Polymers and
Organic Chemistry 8th July 2009
2Outline
Previous work and introduction
Cyclopolymers obtained from difunctional acrylic
monomers
Cyclopolymers obtained from difunctional styrenic
monomers
3Linear, Soluble Polymers
Mathias, L. J. Trends Polym. Sci. 1996, 10,
330-336. Acar, A. E. et al. Macromolecules 2008,
41, 9019-9024
Difunctional monomers (with differing reactivity)
Cyclization, Alternation and Propagation
Fréchet J. M. J, et al. Chem. Mater. 2001, 13,
4136-4146
Stereochemical control, Steric positioning,
Material properties (Tg, etc.)
4Recent Examples
Prata, J. V. et al. React. Funct. Polym. 2006,
66, 465-470
Holmes, A. B. et al. Chem. Commun. 2000,
2419-2420
22-membered rings formed Control achieved using
RAFT
Endo, T. et al. J. Am. Chem. Soc. 2008, 130,
10832-10833
5Previous work and introduction
Cyclopolymers obtained from difunctional acrylic
monomers
Cyclopolymers obtained from difunctional styrenic
monomers
6(No Transcript)
7Gel Permeation
2 AIBN in THF Mn 10600 Mw 17800 DP 21
1 AIBN in THF Mn 5900 Mw 15800 DP 14
2 AIBN in Toluene Mn 20900 Mw 25900 DP 50
2 AIBN in THF Mn 4800 Mw 13400 DP 12
8Transport through a Liquid Membrane
Distilled H2O (Receiving Phase)
Acqueous Solution of Picrate Salt (10-2 M)
Organic Solution (CHCl3) with carrier (10-3 M)
Absorbance of receiving Phase (380 nm) measured
by UV/Vis vs time With no carrier, no transport
occurring
9Selectivity- Monomer vs Polymer
Cagnoni, E. Pasini, D. Galbiati, A. Ricci, M.
Righetti, P. P. Macromolecules 2003, 36,
8894-8897 Blazquez, E. Mustarelli, P. Pasini,
D. Righetti, P. P. Tomasi, C. J. Mater Chem.
2004, 14, 2524-2529
10Novel D-p-A Chromophores
Lewis Acid
D-p-A. LA
1
1. LA
D-p-A
A
2.4
1.2
Eu(OTf)3 In MeCN
600
450
300
l (nm)
LA Lewis acid cation (e.g. Ln3) D. Pasini, P.
P. Righetti, V. Rossi Org. Lett. 2002, 4, 23-26.
G. Garlaschelli I. Messina, D. Pasini, P. P.
Righetti Eur. J. Org. Chem. 2002, 3385-3392. D.
Pasini, P. P. Righetti, M. Zema Org. Biomol.
Chem. 2004, 2, 1764-1769
11Supramolecular Chromophore-Supporting Polymers
A
Double Chromophores
300
400
500
600
l(nm)
Lanthanide ion Complexation
B
A
D-p-A
Eu3
C
12 1H NMR Characterization
p
m
o
t
r
n
a
b
AIBN (3)
c
n,a a,b,b
DP13
f
PhCH3 (0.025 M)
b
t
r
o
m
g
d
e
a
AIBN (3)
d
DP58
c
PhCH3 (0.25 M)
d
AIBN (3)
PhCH3 (0.025 M)
e
DP17-35
e
Differences between feed and observed
ratios (70/30 to 65/35 and 50/50 to 30/70)
3
5
7
1
d (ppm)
13 Eu3 Binding
37.5
e (x10-3)
22.5
7.5
300
500
700
l (nm)
Log Ka Eu(OTf)3, MeCN 3.0 lmax complex 480
nm emax complex 7200
Copolymers have intermediate values
Log Ka Eu(OTf)3, MeCN 2.1 lmax complex 480
nm emax complex 3400
C. Coluccini, P. Metrangolo, M. Parachini, D.
Pasini, G. Resnati, P. Righetti, J. Polym. Sci. A
2008, 46, 5202-5213.
14Previous work and introduction
Cyclopolymers obtained from difunctional acrylic
monomers
Cyclopolymers obtained from difunctional styrenic
monomers
15Styrenic Systems
Crosslinking
53-65
More flexible Efficient Cyclopolymerization
40-50
70-80
a) R Me R Me b) R Ph R H
16Styrenic systems
Polar groups (amphiphilic character)
Deprotected polymer crosslinks thermally by the
loss of H2O at 100C
protected
deprotected
M/ AIBN Mn Mw PDI DP Yield
0.01/4 - - - - No polymer
0.02/4 6400 8200 1.3 16 2 (MeOH)
0.04/4 9600 15500 1.6 24 79 (MeOH)
0.13/4 13100 25500 1.9 32 30 (MeOH)
Cyclopolymerization works efficiently in diluted
conditions
S. Edizer, B. Veronesi, O. Karahan, V. Aviyente,
I. Degirmenci, A. Galbiati, D. Pasini,
Macromolecules 2009, 42, 1860-1866
17Inefficient cyclization Large extent of
crosslinking
Mn 8800 Mw 25800 PD 2.9 Yield (prec.) 24
All soluble material
Mn 6300 Mw 12600 PD 1.9 Yield (prec.) 64
Introduce steric hindrance
18Controlled Polymerization
MRAFTAIBN Time PDI Mn Mw Mn (calcd) Conversion
10031.5 22 h 1.24 9287 11549 9669 74
- 22 h 1.21 9791 11917 ---------- precipitated
10063 22 h 1.26 5525 7005 5684 87
- 22 h 1.24 5998 7459 ------------ precipitated
RAFT
RAFT
Mn
Gives worse results
Conversion ()
19Towards Alternating Systems
Ester cleavage
20Acknowledgments
Claudio Cornaggia Dr. Arvind Sharma Barbara
Veronesi Enrique Blazquez Federica
Spiaggia Emanuela Cagnoni Seda Edizer Marco
Parachini Luigi Garlaschelli- Pierpaolo
Righetti Alessandro Galbiati (NPT) University of
Pavia MIUR PRIN 2004 Fondazione CARIPLO
2007 Regione Lombardia Group website
www.unipv.it/labt
21Conclusions and Outlook
Why Cyclopolymers? Previous work and applications
Cyclopolymers obtained from difunctional acrylic
monomers
Cyclopolymers obtained from difunctional styrenic
monomers
22Access to a Variety of Intermediates
Easy Organic Functionalization
Knoevenagel Reaction
Bingel reaction
Double Alkylation
23Fitting the Values. A 11 Model
Eu(OTf)3 in MeCN
All spectroscopic titrations are fitted with a
11 model.
R2 0,99 Log Ka 3.80.1
24Imaging of a symmetrical cyclopolymer
Carbon-rich functionality for Etch Resistance
Polar Functionality for Development Wettability
70 yield Mn5,800 PDI2.0 A 0.23 / m
Initiator
Acid-Labile Protecting Group
Good resolution (down to 170 nm)
PAG 8 wt Etch 1.22 vs APEX-E (50 Cl2 / 150 HBr)
Pasini, D. Low, E. Fréchet, J. M. J. Adv.
Mater. 2000, 12, 347-351
25Transport in the Solid State (Li)
No Tg observed (up to 100C)
Mn 6300 Mw 12600 DP 15
With Li
Blends of Polymer and PEO (11) doped with LiTFSI
does not show the expected orders of magnitude
increase in conductivity in the solid state
At 100C
Blazquez, E. Mustarelli, P. Pasini, D.
Righetti, P. P. Tomasi, C. J. Mater Chem. 2004,
14, 2524-2529