Summer School High Energy Solar Physics Thermal Radiation - PowerPoint PPT Presentation

About This Presentation
Title:

Summer School High Energy Solar Physics Thermal Radiation

Description:

Title: Summer School High Energy Solar Physics Thermal Radiation Author: Brian Dennis Last modified by: Brian R. Dennis Created Date: 5/20/2006 9:04:58 PM – PowerPoint PPT presentation

Number of Views:154
Avg rating:3.0/5.0
Slides: 93
Provided by: BrianD90
Category:

less

Transcript and Presenter's Notes

Title: Summer School High Energy Solar Physics Thermal Radiation


1
Summer SchoolHigh Energy Solar PhysicsThermal
Radiation
Brian Dennis Kenneth J. H. Phillips
NASA Goddard Space Flight Center Greenbelt MD USA University College Mullard Space Science Lab. London, UK

2
Outline
  • Introduction
  • Why study thermal radiation
  • Basic physics
  • Thermal continua line emission
  • Chianti v. 5.2
  • Observations
  • Interpretation
  • Future

3
Introduction
  • Text Books
  • Aschwanden Physics of the Solar Corona
  • Emslie and Tandberg-Hansen - Solar Flare
    Physics
  • Harra Mason Space Science
  • Herzberg Atomic Spectra Structure
  • Thermal Radiation Covered
  • Optical, UV, EUV, X-rays
  • Lines continua
  • Radio not covered

4
Why study thermal radiation?
  • Negatives
  • Cant differentiate between energy release
    processes
  • All energy release processes produce heat.
  • Nonthermal products become thermal.
  • Line spectra complicated.
  • Positives
  • Line spectra give lots of information.
  • Provides context information for high energy
    processes.
  • Images, spectra, light curves.
  • Morphology, temperature, density, abundances.
  • Magnetic field from Zeeman splitting
  • Optical lines in photosphere
  • IR lines in corona.
  • Total energy in thermal plasma
  • Total radiated energy
  • The best measure of the total flare energy.

5
Thermal Radiation
  • Visible Radiation
  • Temperature structure of atmosphere
  • Element abundances (Fraunhofer lines, curve of
    growth analysis. )
  • Lower chromosphere (Ha, Ca II H K optically
    thick, cores emitted in chromosphere)
  • Magnetic field
  • UV EUV
  • Chromosphere (H Ly-a, He I II)
  • Transition region corona (1600, 171, 195 Å)
  • Soft X-rays
  • Active regions
  • Flares
  • Radio

6
Intensity Flux
Specific Intensity (erg cm-2 s-1 keV-1 ster-1)
Detected Flux (erg cm-2 s-1 keV-1)
received intensity (erg cm-2 s-1 keV-1 ster-1)
7
Intensity Flux
  • Specific Intensity of Source
  • Units - erg cm-2 s-1 erg-1 ster-1
  • Energy emitted by source per unit area of source,
    time, photon energy, solid angle.
  • Photon energy in ergs, Hz, cm-1, or keV
  • Flux of photons from source detected in space
  • Units - photons cm-2 s-1 erg-1
  • Number of photons detected per unit detector
    area, time, photon energy.
  • Total Intensity of Source
  • Units - erg cm-2 s-1 erg-1
  • Flux x 2? D2
  • D distance between source and detector (1 AU)
  • Assumes isotropic emission over upward
    hemisphere.

8
Solar Spectrum
9
Black-Body Radiation
  • Equilibrium between emission absorption
  • Applies to photosphere
  • Kirchhoffs Law
  • ? - emission coefficient (erg s-1 cm-3 Hz-1
    rad-1)
  • ? - absorption coefficient (erg s-1 cm-3 Hz-1
    rad-1)
  • n - refractive index of the medium
  • B(T) - universal brightness function at
    temperature T (erg s-1 cm-2 cm-1 steradian-1)
  • ? - frequency (Hz)

10
Plancks LawBlackbody Brightness vs. ? (or ?)
and T
  • B(T) Planck function (erg s-1 cm-2 cm-1
    steradian-1)
  • h Plancks constant 6.63 10-27 erg s
  • ? frequency in Hz
  • ? wavelength in cm
  • n refractive index of the medium
  • c velocity of light 3.0 1010 cm s-1
  • kB Boltzmanns constant 1.38 10-16 erg K-1
  • T temperature in K

11
Black-Body RadiationPlancks Function - B?(T)
12
Plancks Function - B?(T)
  • Wien Displacement Law
  • Wavelength at which B? is maximum
  • Stefan-Boltzmann Law
  • Total flux - all wavelengths over the visible
    hemisphere
  • ? - Stefan-Boltzmann constant 5.67 10-5 erg s-1
    cm-2 K-4

13
Plancks Law Approximations
  • Short Wavelengths (X-rays)
  • Wiens Law
  • kB Boltzmanns constant 1.38 10-16 erg K-1
  • Long Wavelengths (Radio)
  • Rayleigh-Jeans Law

14
Definition of Temperature
  • From spectrum
  • Brightness temperature
  • Same flux at a given wavelength as Plancks
    Function
  • Color temperature
  • Distribution of energy in a wavelength range
  • Effective temperature
  • Same total energy as in Plancks Function

15
LTELocal Thermodynamic Equilibrium
  • Maxwellian velocity distribution
  • Mean energy 3/2 k T per particle
  • Fv
  • Applies in photosphere
  • Ionization equilibrium
  • Saha Equation
  • Fraction of ions in k state of ionization

16
Chromosphere Corona
17
Solar Spectrum
  • Quiet Sun
  • Flares
  • -
  • Gamma-rays
  • to
  • Radio

18
Chromosphere Corona
Chromospherepartially ionized
Coronafully ionized
Transition Region
19
Chromosphere Corona
  • Not black-body
  • Optically thin in EUV X-rays
  • Fraunhofer absorption lines in UV(l gt 1900Å)
  • Line emission from H, He, ionized metals, etc.
  • Not LTE
  • Chromosphere partially ionized
  • Corona is fully ionized

20
Principal Radiations
  • Continuum Emission
  • Free-free emission (thermal bremsstrahlung)
  • Free-bound emission
  • Two-photon
  • Line Emission
  • Bound-bound transitions in atoms ions
  • Scattered Radiation
  • Thompson scattering of photospheric emission (?
    LASCO images)

21
Thermal Bremsstrahlung
Electron in hyperbolic orbit
22
Free-Free EmissionThermal Bremsstrahlung
  • Photon Spectrum
  • Units - keV s-1 cm-2 keV-1
  • ? - photon energy h?
  • n - electron and ion density
  • V - source volume

23
Free-Bound Emission
Continuum emission Spectral edges at atomic
energy levels
24
Two-Photon Continuum
  • Ion in excited J 0 state, energy E1 (J is
    total angular momentum)
  • De-excites to ground state with J 0, energy E0
  • Single photon cannot be emitted (because photon
    spin 1)
  • 2 photons with opposite spins can be emitted
  • Photon energies, ?1 ?2 E1 E0 ? continuum
  • Important for He-like ions
  • Lowest excited state is 21S0

25
Atomic Data Bases
  • Available Codes
  • Chianti (v. 5..2)
  • MEKAL (Mewe)
  • APEC/APED used in astrophysics
  • SPEX
  • Parameters
  • Temperature 103 108 K
  • Photon wavelength/frequency/energy
  • Density
  • Abundances
  • Ionization equilibrium

26
Data Bases Compared
APED v. 1.10
APED SPEX
SPEX
Chianti v. 4.0
27
CHIANTI (Landi et al., 2005)
  • An Atomic Database for Spectroscopic Diagnostics
    of Astrophysical Plasmas
  • In SSW/packages or stand-alone
  • GUI - IDL gtch_ss
  • Command-line interface
  • Great users guide

CHIANTI is a collaborative project involving NRL
(USA), RAL (UK), and the following Universities
College London (UK), of Cambridge (UK), George
Mason (USA), and of Florence (Italy).
28
(No Transcript)
29
Thermal Continuum Emission
Total Free-bound Free-free 2-photon
2-photon
2-photon
  • T 20 MK Coronal Abundances
  • Chianti v. 5.2

30
Free-Bound Fraction (Chianti)
Coronal abundances Mezzotta et al. ionization
equilibrium
T 20 MK
T 40 MK
Free-bound
Free-free
Free-bound
Free-free
31
Free-Bound FractionCulhane, MNRAS, 144, 375,
1969.
Free-bound fraction of total flux
32
Line EmissionHydrogen Atom
Lyman Series
Balmer Series
33
Hydrogen
  • Emission Lines

34
Quantum Numbers
  • Principal quantum number
  • n 1, 2, 3, 4 K, L, M, N,
  • Orbital angular momentum
  • l 0, 1, 2, 3, 4, 5, s, p, d, f, g, h,
    where l lt n
  • Projected angular momentum
  • ml l, l - 1, l - 2,-l
  • Electron spin ms ½

35
Electron States
Shell K L L L L
n 1 2 2 2 2
l 0 0 1 1 1
l s s p p p
ml 0 0 -1 0 1
ms ½ ½ ½ ½ ½
m ½ ½ -1/2-3/2 ½ 1/23/2
Shell K L1 L2 L2 L2
36
Spectral Notation
  • Electron Configuration n lN
  • n - principal quantum number
  • l orbital angular momentum
  • N - number of electrons in given configuration
  • H ground configuration 1s
  • Neutral Fe ground configuration
  • 1s22s22p63s23p64s24p6one s squared
  • Neutral He Fe XXV ground configuration
  • 1s2 one s squared

37
Spectral NotationAtomic or Ionic States
  • Specification of ion state 2S1LJ
  • S vector sum of all electron spins
  • 2S1 number of possible values of J
  • L vector sum orbital angular momentum of all
    electrons0,1,2,3,4,5,S, P. D, F, G, H,
  • J vector sum angular momentum of atom L S
  • Fe XXV ground state 1s2 1S0 (one s squared
    singlet S zero)
  • Fe XXVI 1s 2S1/2 (one s doublet S half)

38
Chromosphere CoronaIonization-Recombination
Equilibrium
Ions with Complete Outer Shells Fe IX Fe XVII Fe
XXV More stable, so higher fraction
39
Flares
40
Highly-ionized Iron - FeXXV
  • Ion - Fe24
  • Spectrum - FeXXV
  • 2 electrons remaining in K shell
  • helium-like
  • Ground state 1s2 (one s squared) 1S0 (singlet
    S zero)
  • Transitions between levels give emission lines
  • Phillips, The Solar Flare 3.8-10 keV X-Ray
    Spectrum, ApJ, 605, 921, 2004.

41
Fe-line Complex (6.7 keV)
  • Fe xxv w line (resonance line)
  • Energy 6.699 keV
  • Wavelength 1.8508 Å
  • Transition 1s2 1S0 1s2p 1P1
  • Strongest line quantum mechanically allowed
  • Many satellite lines at lower energy
  • Series 1s 2p in presence of other electrons
  • From FeXXV FeII Ka doublet
  • FWHM 0.1 keV

42
Chianti SpectrumT 20 MK Coronal Abundances
Fe XXV
Ca XIX
Fe XXVFe XXVINi
T 20 MK
43
Fe-line Complex (Chianti v. 5)
44
Fe/Ni-line Complex (Chianti v. 5)
45
Equivalent Width Definition
Area of emission line above continuum
1.0 x w
46
Fe Fe-Ni Line ComplexesEquivalent Widths vs.
Temperature
47
Fe Line ComplexesEquivalent Width vs. Temperature
26 April 2003
48
Fe Fe-Ni Line ComplexesRatio vs. Temperature
Equivalent Widths
Intensities
49
Fe Line Complex (6.7 keV)Peak Energy vs. T
50
Chianti SpectrumFe Line Complex near 6.7 keV
51
RHESSI Sensitivity
52
RHESSI Imaging SpectroscopyCaspi Lin, 2005
53
Flux Ratio vs. TemperatureCaspi Lin, 2005
54
First Ionization Potential (FIP) Effect
Solar wind particles?
Feldman Widing 2003
55
FIP Effect
  • Magnetic and/or electric fields move ions but not
    neutrals.
  • Ions dragged up into corona from chromosphere/T
    minimum/photosphere.
  • Consequently, low FIP ions
  • FIP lt 10 eV
  • Fe, Ni, K, Na, Ca, Al, Mg, Si,
  • Preferentially moved to corona.
  • Coronal abundances 4 times photospheric

56
Feldman - Flares
57
Flare Energetics
58
Radiated Energy Losses
  • Energy radiated from thermal plasma over all
    wavelengths
  • Lrad EM frad(T) ergs s-1
  • EM emission measure
  • T - temperature
  • frad(T) - radiative loss function
  • Total radiated energy from the flare plasma
  • Ltotal ? Lrad(t) Dt erg
  • Sum is over the duration of the flare

59
Chianti Radiative Loss Function
10-21
C, O, Si
FeIX

Ly alpha
Coronal abundances
Radiative Energy Loss (erg cm3 s-1)
10-22
Fe XVII
Photospheric abundances
Continuum
Mazzotta ionization equilibrium
10-23
4 5 6 7 8 Log T(K)
60
Conductive Cooling
  • Conductive losses assuming classical conduction
  • Lcond A k0 T5/2 VT ? 4 A/L k0 T7/2 erg s-1
    K-1
  • k0 10-6 erg cm-1 s-1 K-5/2 (classical
    Spitzer coefficient)
  • A - loop cross-sectional area in cm2
  • L - loop half length in cm
  • A, L, and T from RHESSI images and spectra.

61
Radiative and ConductiveCooling Times vs.
Temperature

Radiative
Conductive
Loop Length 1010 cm
62
Emission Measure Demystified
  • Column Emission easure
  • CEM ? ne nH dh cm-5
  • Volume Emission Measure
  • VEM ? ne nH dV cm-3
  • VEM ?Asource CEM dA
  • VEM Asource CEM cm-3

63
Photon Flux at Earth
  • SI(CEM27) - specific intensity for CEM 1027
    cm-5
  • Flux(CEM27, ?)
  • I(?) (Adetector / D2) / Adetector photons cm-2
    s-1 Å-1
  • Asource SI(CEM27, ?) / D2 photons cm-2 s-1 Å-1
  • Asource 1027 SI(CEM1, ?) / D2 photons cm-2 s-1
    Å-1
  • (Note that the detector area cancels out.)
  • This corresponds to the flux from a CEM of 1027
    cm-5 or a VEM of Asource 1027 cm-3.

64
Column to Volume EM
  • VEM of 1049 cm-3 ? CEM x 1049 / (Asource 1027)
  • FVEM49(?) FCEM27(?) 1049 / (Asource 1027)
  • 10(49 - 27) D-2 SICEM27(?) photons cm-2 s-1
    Å-1
  • Source area cancels out.
  • D 1.5 1013 cm, D2 2.25 1026 cm2 1026.352
    cm2
  • FVEM49(?) 10(49 - 27 - 26.352) SICEM27(?)
    photons cm-2 s-1 Å-1
  • 10-4.352 SICEM27(?) photons cm-2 s-1 Å-1
  • 4.45 10-5 SICEM27(?) photons cm-2 s-1 Å-1
  • SICEM(27-4.352)(?) photons cm-2 s-1 Å-1
  • SICEM 22.648(?) photons cm-2 s-1 Å-1
  • SICEM22.648 is the specific intensity obtained
    from CHIANTI for CEM 1022.648 cm-5.

65
Blue shifts flare dynamics
66
SMM/BCS SpectrumFe XXV lines and satellites
Lemen et la. 1984 Gabriel 1982
67
SMM/BCSFe Spectra
w
  • Solid SMM/BCS data
  • Dashed Fe XXII-XXV line spectra
  • Single temp. fits
  • w Fe XXV resonance line
  • f(T,Z) Z4/T
  • Lemen et al., AA, 135, 313 (1984).

w
68
SMM/BCSCa XIX Spectra
69
TRACE Spectral Bands
70
TRACE
171 Å
  • Temperature Coverage
  • EM 1044 cm-3
  • Handy et al. Solar Phys., 187, 229, 1999.

195 Å
1600 Å
71
TRACE EIT171 Å Filter Response
Phillips et al. ApJ, 626, 1110, 2005.
72
TRACE EIT195 Å Filter Response
FeXII
FeXXIV
Phillips et al. ApJ, 626, 1110, 2005.
73
RHESSI EIT - TRACE MovieX1.5 Flare on 21 April
2002
Click to show movie
74
High-Temperature Component
  • AB hot spine
  • - T 15 MK
  • - needs continuing energy input.

75
Blue Shifts and Line Broadening
  • P78
  • SOLFLEX
  • Bragg Crystal Spectrometer
  • FeXXV
  • Doschek, 1990, ApJS, 73,117, 1990

76
Blue Shifts and Line Broadening
  • SMM/BCS
  • CaXIX
  • Te 1.2 107 K
  • TDoppler 4.5 107K
  • Antonucci, Gabriel, Dennis, ApJ, 287, 917, 1984.

77
Blue Shifts and Line Broadening
  • SMM/BCS
  • CaXIX
  • Doschek, 1990, ApJS, 73,117, 1990

78
Blue Shifts and Line Broadening
  • Blue shift ? upflow velocity 100 300 km s-1
  • Unshifted component always dominates why?
  • Thermal line broadening ? Te
  • Nonthermal line broadening ?TDoppler
  • TDoppler - Te ? plasma turbulence.

79
Multithread Model(Warren, ApJ, 637, 522, 2006.)
  • Multithreads heated successively each on a time
    scale of 200 s.
  • Explains lack of 100 blue-shifted component
    early in flare
  • Shorter time scales lead to higher temperatures
    than observed.

80
DEM AnalysisAschwanden Alexander, Sol. Phys.
204, 93, 2001
Instrument response (dF/dEM) vs. Temperature
81
DEM AnalysisAschwanden Alexander, Sol. Phys.
204, 93, 2001
Normalized G(T) functions
82
DEM AnalysisAschwanden Alexander, Sol. Phys.
204, 93, 2001
Bastille Day event 14 July 2000 Best fit double
half-Gaussian DEM model at flare peak.
83
CORONAS-FDEM for the active region and the flare
28.12.2001
84
Markov-Chain Monte Carlo (MCMC)DEM Analysis
(Liwei Lin, SAO)
85
DEM Analysis Limitations
Sylwester
86
Deal or No DealThermal or Nonthermal
  • Time history
  • Thermal is slow and smooth
  • Nonthermal is fast and impulsive
  • Spectrum
  • Thermal is exponential
  • Nonthermal is power-law
  • Image
  • Thermal is coronal extended
  • Nonthermal is footpoints compact

87
Energy Dependent Time Delays
88
Thermal Energy
  • Thermal energy of plasma
  • Uth 3 ne V kT 3 k T EM f Vapparent1/2 erg
  • ne electron density in cm-3
  • V volume of emitting plasma in cm3
  • Vapparent volume from image
  • f - filling factor (assumed to be 1)
  • k Boltzmanns constant
  • T temperature (from GOES and RHESSI)
  • EM ne2 V emission measure in cm-3 (from GOES
    and RHESSI)
  • V f Vapparent f A3/2
  • A - source area from image

89
CME vs Flare Energies
90
Increase in Total Solar IrradianceX17 flare on
28 October 2003
91
Increase in Total Solar IrradianceX17 flare on
28 October 2003
92
Future
  • Stereo 2006
  • Coronagraphs
  • EUV?
  • Solar B 2006
  • EIS like CDS images in ?
  • GOES N - 2006
  • SXI
  • Coronas 2008
  • SphinX
  • EIT look alike
  • Solar Orbiter 2017?
  • Hard X-ray imager
  • Sentinels
  • Indian 2nd solar spacecraft
  • Soft X-ray imaging spectrometer
Write a Comment
User Comments (0)
About PowerShow.com