Talk for Collaboration Meeting - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Talk for Collaboration Meeting

Description:

Title: Talk for Collaboration Meeting Author: Fernando Palombo Last modified by: cds Created Date: 6/27/2002 7:49:43 AM Document presentation format – PowerPoint PPT presentation

Number of Views:188
Avg rating:3.0/5.0
Slides: 22
Provided by: FernandoP154
Category:

less

Transcript and Presenter's Notes

Title: Talk for Collaboration Meeting


1

Branching Fraction and Direct CP Violation in
B0??K 0 and B ???h ?
Alfio Lazzaro Dipartimento di Fisica and INFN,
Milan on behalf of the BaBar Collaboration America
n Physical Society 2003, Philadelphia
2
Overview
  • Physics Motivation
  • Analysis Strategy Samples, Event Selection, ML
    fits
  • Results on Branching Fractions and Charge
    asymmetries
  • Conclusion

3
Physics Motivation
  • Measurements of Branching Fractions allow
    constraints on phenomenological models
  • Charge asymmetries (Ach) expected large (gt20) in
    B?h K (Soni, PRL 43, 242 (1979)) and B?h p
    (Gronau, PRL 79, 4333 (1997))

Previous Measured Branching Fractions (?10?6)
Need precise measurements

4
Data Samples and Sub-channels
We have used 81.9 fb-1 on-resonance (88.9
millions of BB pairs)
_
We considered 3 channels

Reconstructed in
(23)
(39)
5
Event selection
  • Beam energy to constraint B mass and energy

  • Event shapes to distinguish B events from
    continuum udsc
  • Fisher discriminant combining 4 variables
  • direction of B thrust axis wrt beam direction
  • direction of B momentum wrt beam direction
  • 2 Legendre moments of the energy flow of rest of
    event wrt B thrust axis
  • cos (qthrust) lt 0.9
  • Loose cuts based on shapes variables, PID and
    kinematical quantities of secondary daughters,
    Cherenkov angle cut for h? selection.
  • We prepare the input to Maximum Likelihood Fit

6
Observables
  • Two types of background
  • qq (continuum ) dominant
  • bb (non continuum ) 1 2
  • Observables ?E, mES , Fisher, h mass

_
_
We use Unbinned Extended Maximum Likelihood (ML)
Fit to extract signal yields and charge
asymmetries
7
Results for hK0 and hh?
Preliminary
First observation
8
Negative logLikelihood

Dashed blue line Dotted red line Solid black
line
9
mES and DE projections

Shaded histograms represent h ? gg
10
Systematics on BF and Ach
  • Sources
    Error on yields
  • Systematics due to ML fit efficiency and bias
  • Daughter Branching fractions
  • Reconstruction efficiencies
    (h, p0, KS,
    charged tracks)
  • Other sources BB Number, MC statistics,
  • PID,


?0.3 - ?0.5 ?0.03 - ?0.4 ?0.3 - ?2.0 ?0.03 - ?0.6
Total systematic error on BF
7.1 (hh )
7.7 (hK 0)
Charge Asymmetries Systematic on charge
dependence bias
1.1
11
h?K0, h?K?
  • Branching Fraction for B?h?K larger than
    initially expected by theory
  • Tree diagrams are Cabibbo suppressed
  • Interference between two penguin diagrams and the
    known h h ? mixing angle conspire to
    greatly enhance B?h ?K and suppress B?h K
    (Lipkin, Phys. Lett. B 254, 247 (1991))


12
Results for h?K0 and h?K?

BF
Preliminary
Ach
See also talk by Fred Blanc, Session T11
13
mES and DE Projections

Shaded histograms represent h? ? hpp
14
Conclusion
We have presented the following preliminary
results

First observation
Suppressed B?h K Enhanced B?h ?K
2.5s
15
Altre Analisi in Corso
Bgt h'?
  • BAD-462 Supporting Document
  • BAD-605 Physics Note

s
g
?
_
_
t
s
_
b
_
d
??
B0
W
d
d
Risultati di CLEO
16
Bgt h'?
  • Analisi finita da tempo
  • Yields negativi
  • Quindi abbiamo fatto una analisi
  • di tipo Bayesiano
  • Si sta ancora discutendo con
  • i referee (Bob Cahn) ed altri
  • esperti sul modo piu appropriato
  • di presentare i risultati


17
Bgt hKL
  • Supporting document BAD-591
  • Scopo Misura di BR e Time-Dependent
    CP-Violating Asymmetries ( analogo a quanto
    abbiamo fatto con ???S)
  • Attualmente usiamo il sotto-decadimento ??? ???
    ma in un prossimo futuro verra aggiunto ???
    ??
  • Statistica usata RUN 1 RUN 2

18
Bgt hKL
  • Funzioni di likelihood per la identificazione
    delle KL (Antimo)
  • Constraint su MB e sulle direzioni per la
    ricostruzione cinematica
  • Analisi ML con le variabili Mse , M?? , M?
    , Fisher
  • Forte presenza di fondo comporta tagli su cos
    qT ? bassa ? ( 6 )

19
Bgt hKL
  • Ora stiamo cercando di aumentare lefficienza di
    ricostruzione sostituendo alcuni tagli
    e il discriminante di Fisher con una rete
    neurale (NN). Uscita della rete usata come
    taglio per input ML

DE , M?? , M?
  • Analisi ML utilizzando le variabili

( NN , ?? )
  • Analisi cut count nel piano
  • Control Sample ee- ? ?? ( ? ? ?S ?L )

20
Bgt hKS
  • Stiamo misurando il BR di questo canale nel
    sottodecadimento
  • h?? h p p e h? 3 p KS? ? ?-
  • Stiamo aggiornando lanalisi a tutta la
    statistica (Run1 Run2)
  • Useremo questi dati nella prossima analisi
    CP-time dependent
  • Supporting Document BAD-488

21
Bgt h?? , h?h , h?h? , hh
  • Stiamo misurando il BR di B???? nei
    sottodecadimenti
  • con h???? e h?? h p p (h? ??)
  • Per i canali hh, hh?, h?h ? stiamo usando le
    varie combinazioni dei sottodecadimenti con h???
    e h?3?, h???? e ?????? . In queste analisi
    siamo ancora agli inizi!
Write a Comment
User Comments (0)
About PowerShow.com