Title: LOGISCHES SCHLIESSEN
1LOGISCHES SCHLIESSEN
- Wie ziehen Menschen im Alltag logische Schlüsse?
- Ursprüngliche Annahme Logische Regeln sind
(vielleicht etwas idealisierte) Regeln des
Denkensz.B. John Stuart Mill (1843), - Ziehen gültiger Schlüsse für viele kognitive
Prozesse relevant, z.B. Feststellung, ob ein
Objekt eine bestimmte Eigenschaft hat oder nicht,
Planung, Kommunikation, Rekonstruktion aus dem
Gedächtnis, Problemlösen, Vorhersagen, .....
2- Vorschau
- Logik Einfache Aussagenlogik
Syllogismen - empirisch
- Fragen für Denkpsychologie - zentrale
theoretische Ansätze - Konditionale Schlüsse
- Wason-Selektion Task
- Theorien der Abstrakten Regeln
- Modell-Theorie
- Bereichspezifische Regel-Theorien
- Analogieschlüsse
3LOGISCHE SCHLUSSREGELN (Beispiele)
- EINFACHE AUSSAGENLOGIK
- P, Q . Aussagen (Sätze) (es
regnet, Saddam Hussain singt an der Met,) - Aussagen können wahr sein (w) oder falsch (f)
- Logische Operatoren wirken auf Sätze,
kombinieren Sätze - Verneinung nicht P P nicht
P - w f
- f w
4- Konjunktion und
- P Q P und Q
- w w w
- w f f
- f w f
- f f f
- Disjunktion oder (inklusives oder)
- P Q P oder Q
- w w w
- w f w
- f w w
- f f f
5- Implikation wenn P, dann Q
- P Q wenn P, dann Q
- w w w
- w f f
- f w w
- f f w
- Beispiel Wenn es regnet, dann ist die Strasse
nass - es regnet die Strasse ist nass wenn
es regnet, dann ist die
Strasse nass - w w w
- w f f
- f w w
- f f w
6- Äquivalenz P dann und nur dann, wenn Q
- P Q P dann und nur dann, wenn Q
- w w w
- w f f
- f w f
- f f w
7SCHLUSSREGELN
- MODUS PONENS
- Prämissen (voraussetzungen)
- Wenn P, dann Q Wenn heute Sonntag ist,
dann habe ich frei - P heute ist Sonntag
- _______________ ______________________
___ - Konklusion (Schlussfolgerung)
- Q ich habe frei
8- MODUS TOLLENS
- Prämissen Voraussetzungen)
- Wenn P, dann Q Wenn heute Sonntag ist,
dann habe ich frei - nicht Q ich habe nicht frei
- _______________ ______________________
___ - Konklusion (Schlussfolgerung)
- nicht P heute ist nicht Sonntag
9- UNGÜLTIGE SCHLUSSFORMEN
- Falsche Negation der Konsequenz
- Prämissen
- Wenn P, dann Q Wenn heute Sonntag ist,
dann habe ich frei - nicht P heute ist nicht Sonntag
- _______________ ______________________
___ - Konklusion
- nicht Q ich habe nicht frei
- ( Konklusion folgt nicht logisch zwingend aus
Prämissen!)
10- Falscher Schluss auf Antezedens (Vordersatz)
- Prämissen
- Wenn P, dann Q Wenn heute Sonntag ist,
dann habe ich frei - Q ich habe frei
- _______________ ______________________
___ - Konklusion
- P heute ist Sonntag
- ( Konklusion folgt nicht logisch zwingend aus
Prämissen!)
11- SYLLOGISMEN
- Schlussregeln mit Unterscheidung von Aussagen,
die für alle Elemente einer Menge gelten, von
solchen, die nur für einige Elemente (mindestens
eines) gelten.(Quantoren) - Beispiele
- Alle B sind C
- Einige A sind B_________________
- Einige A sind C
alle Fribourger sind Schweizer einige Psychologen
sind Fribourger___________________________ einig
e Psychologen sind Schweizer
12- Einige B sind C
- Einige A sind B________________
- Einige A sind C
einige Fribourger sind Studenten einige Schweizer
sind Fribourger___________________________einige
Schweizer sind Studenten
Einige B sind nicht D Alle B
sind C _________________ Einige C
sind nicht D
einige Schweizer sind nicht Bankiers alle
Schweizer sind Europäer__________________________
_einige Europäer sind nicht Bankiers
13- Einige B sind C
- Einige A sind B________________
- Einige A sind C
einige Bayern sind Päpste einige Frauen sind
Bayern___________________________ einige Frauen
sind Päpste
14Darstellung von Syllogismen in Form vonVenn -
Diagrammen
- Alle B sind CEinige A sind
B______________Einige A sind C
15- Einige B sind CEinige A sind
B_____________Einige A sind C
16- Einige B sind nicht DAlle B sind
C__________________Einige C sind nicht D
17- WICHTIGE FRAGEN FÜR DENKPSYCHOLOGIE
- Weichen Menschen von logischen Schlussregeln
ab? - Wenn ja, warum?
- zwei zentrale theoretische Ansätze zur
Erklärung - Regeltheorien
- Mentale Modelle
18- Regeltheorien - Schlussfolgern aufgrund von
Regeln z.B.
Braine (1978,..) - Menschen besitzen allgemeine Schlussschemata
oder -regeln. - Je nach Theorie abstrakt oder
domainspezifisch (bereichsspezifisch), - Menschen wenden derartige Regeln an beim
Schliessen - domainspezifische Regeln sind sensitiv für den
Inhalt - Abweichungen, weil
- Aufgabe in natürlicher Sprache vorgegeben.
Bei Enkodierung der natürlichen
Sprache Übersetzungsfehler möglich - Überlastung des Arbeitsgedächtnisses
(z.B. bei komplexen Regeln)
19- Schlussfolgern mithilfe Mentaler
ModelleJohnson-Laird (1983,...) - Menschen konstruieren aus den vorgegebenen
Aussagen ein Mentales Modell (z.B. räumliche
Anordnung). - Schlüsse werden dann mithilfe der Information aus
dem Mentalen Modell gezogen. - Fehler, wenn zu viele Modelle gleichzeitig
(Überlastung) -
20Konditionale Schlüsse
- Implikation wenn P, dann Q
- (Äquivalenz P dann und nur dann, wenn Q
) P genau dann, wenn Q - Schlüsse auf der Basis der Implikation, z.B.
- P ist wahr, ist dann
auch Q wahr? - P ist nicht wahr, ist Q
wahr? etc.
- Welche gültigen bzw. ungültigen Schlussformen
verwenden Menschen?
21- Typisches Experiment
- Vp werden konditionale Aussagen vorgegeben,
z.B. - Wenn es regnet, ist die Strasse nass
- Es regnet
- Anschliessend Frage
- Ist die folgende Aussage richtig?
- Die Strasse ist nicht nass
- Varianten freie Antwort Auswahl aus
vorgegebener Liste
22- Vier Schlussformen
- gültig
- MODUS PONENS
- Wenn P, dann Q P
daraus folgt Q - MODUS TOLLENS
- Wenn P, dann Q nicht Q daraus
folgt nicht P - ungültig
- FALSCHE NEGATION DER KONSEQUENZ
- Wenn P, dann Q nicht P daraus
folgt nicht Q - FALSCHER SCHLUSS AUF ANTEZEDENS
- Wenn P, dann Q Q
daraus folgt P
23- Typisches Ergebnis - hier aus Marcus Rips
(1979)
Anwendung (korrekt bei MP und MT)
24- Fehler werden nicht in allen Fällen gemacht
- KONTEXT - EFFEKTE bei Konditionalen
Schlüssen - Kontext-Effekte entstehen durch zusätzliche
Information - z.B. Vorgabe alternativer Antezedens-Sätze kann
Fehler verringern. (Markovits,
1984, 1985 Rumain et al., 1983) - - es wird gezeigt, dass Q eine Konsequenz von
mehreren Antezedens-Sätzen sein kann - Beispiel
- Wenn P, dann Q Wenn es regnet, dann ist
sie nass - Wenn R, dann Q Wenn es schneit, dann ist
sie nass - Q Sie ist nass
- ______________ ___________________________
_ - ? ?
25- Allerdings durch anderen Kontext auch zusätzliche
Fehler Byrne (1989) zusätzliche (additionale)
info, die als zusätzliche Bedingung interpretiert
wird - Wenn sie eine Seminararbeit schreiben muss, dann
arbeitet sie
lange in der
Bibliothek - Wenn die Bibliothek offen bleibt, dann arbeitet
sie lange in der
Bibliothek - Sie muss eine Seminararbeit schreiben
- _____________________________________________
- ?
- Struktur gleich wie vorher Wenn P, dann Q
Wenn R,
dann Q
P - ?
26- Ergebnis aus Byrne (1989)
27Syllogismen Menschen machen häufig Fehler z.B.
Einige B sind C Einige A sind
B ________________ Einige A
sind C häufig als gültiger Schluss akzeptiert
28Klauer, Musch Naumer (2000) Effekt der
Basisraten gaben Vpn Syllogismen vor ½
gültig ½ ungültig Info für Vpn getestete
Syllogismen sind Zufallsstichprobe aus grosser
Zahl von Syllogismen UV 1 (zwei Gruppen)
wieviele der Syllogismen sind gültig (Basisrate)
Gruppe 1 1/6 gültig Gruppe 2
5/6 gültig UV 2 hohe / geringe Glaubwürdigkeit
der Schlussfolgerungen z.B. einige Fische
sind keine Forellen einige Forellen sind keine
Fische Beide UVn zeigen erwarteten
Effekt Schlussfolgerungen mit hoher
Glaubwürdigkeit öfter als gültig beurteilt Gruppe
mit 5/6 Basisrate beurteilt öfter als
gültigResultat zeigt, wie unsicher wir im
Umgang mit Syllogismen sind
29Atmosphären-Effekt (Woodworth Sells, 1935
Chater Oaksford, 1999) Form der
Prämissen beeinflusst Erwartungen über Form der
Konklusion z.B. alle alle ? alle einige
einige ? einige Übersetzungs-Fehler (z.B.
Chapman Chapman, 1959) alle A sind B
gleichgesetzt mit alle B sind A einige A sind
keine B mit einige B sind keine A
30(No Transcript)
31- Implikation wenn P, dann Q
- P Q wenn P, dann Q w w w w f f
f w w f f w - um festzustellen, ob Regel Wenn P, dann Q
erfüllt ist, Konzentration auf Fälle, in
denen sie falsch werden kann (2. Zeile der
Wahrheitstafel) - wenn P wahr ? prüfen, ob Q wahr oder falsch
- wenn Q falsch ? prüfen, ob P wahr oder falsch
- Typisches Resultat
- nur wenige Vpn wählen korrekte Karten ( E und 7)
( P und nicht-Q )
32Johnson-Laird Wason (1970) (4 Experimente)
33- Erklärung von Wason
- Confirmation-Bias (bias Verzerrung)
- Meiste Vpn versuchen, Regel zu bestätigen --
nicht, zu falsifizieren. (Analog zum 2-4-6
Problem). - Daher E gewählt, um zu prüfen, ob gerade Zahl
auf der anderen Seite 4 gewählt, um
zu prüfen, ob Vokal auf der anderen Seite - Problem mit dieser Erklärung
- Auch andere Ursache möglich
ungünstige Teststrategie beim Falsifikationsversuc
h - Empirische Ergebnisse mit konkreter
Formulierung Wieso tritt Fehler
dabei nicht auf - (Generelles Problem von Confirmation
biases Vpn müssten
eigentlich richtige Lösung kennen!)
34- Matching Bias (Evans, 1984, 1998)
- Menschen wählen Karten mit Symbolen,
die in Regel genannt
werden. - z.B. im Beispiel Vokal und gerade Zahl E und
4 - Problem
- Matching Bias kann Verhalten in realistischer
Version nicht erklären
35Realistische Einkleidung des Wason Selection
Tasks Es ist zu prüfen, ob alle Briefe richtig
frankiert sind. Jeder Brief ist zugeklebt (P)
oder offen (nicht P) Jeder Brief entweder eine
4d-Marke (nicht-Q) oder eine 5d-Marke (Q) Regel
Wenn ein Brief zugeklebt ist, dann
muss er mindestens eine 5d Marke haben. Welche
der vier Briefe müssen unbedingt kontrolliert
(umgedreht) werden?
P nicht-P Q
nicht-Q
36 Resultat Johnson-Laird, Legrenzi Legrenzi
(1971) 92 korrekt (22 von 24)
korrekt Resultat (geringe Fehlerzahl bei
realistischer Einkleidung des Wason-Task)
mit anderen realistischen Aufgaben bestätigt.
37- Erklärung
- Erfahrung (memory-cueing hypothesis) /Griggs,
1983) - realistische Einkleidung und Erfahrung
allein als solche nicht ausschlaggebend
(siehe Eysenck Keane, 2000) - Deontische Struktur (Normen, Regelung,
Erlaubnis) - realistische Versionen scheinen alle eine
deontische Form zu suggerieren (Verbot,
Gebot, Erlaubnis) (Manktelow Over,
1991) - Wenn du P tust, dann
musst du Q - ( Aussageform Wenn P, dann Q)
38- Kritisches Experiment von Cheng Holyoak (1985)
- Schlussfolgerung sollte erleichtert werden, wenn
spezielles deontisches Schluss-schema
ausgelöst - Erlaubnis-Schema Wenn Du die Bedingung X
erfüllst, dann darfst Du
Y tun. - Aktivierungsprozess des Schemas beeinflussbar
durch - Problemstellung - ob
Anwendung eines Schemas in der Situation
ausreichend begründet ist - Daher Bei identischer Problemstellung sollte
Schwierigkeit eines Schlusses mit
Begründbarkeit variieren
39- UV 1 2 Versionen des Wason Selection Tasks
- Version 1 Post
- Version 2 Passagier-Formulare auf dem
Flughafen - Vp agiert als
Zollbeamter/in.
Passagiere müssen ein Formular vorweisen. - Regel Wenn
ENTERING auf der Vorderseite,
muss auf der anderen
Seite CHOLERA auf
der dort angeführten Liste von
Krankheiten
vorhanden sein.
40- UV 2 Begründung gegeben oder nicht
- Begründungen (für die Anwendung des Schemas)
- Post Zugeklebte Briefe haben höheren Status als
offene, daher teurer. - Cholera Formular enthält auf Rückseite die Liste
der Krankheiten, gegen welche
diese Person geimpft wurde. - 2 Gruppen von Vpn mit unterschiedlicher Erfahrung
- Hongkong Post-Regel bekannt
Passagier-Regel unbekannt - Mich., USA Post-Regel unbekannt Passagie
r-Regel unbekannt
41- Hypothesen
- Einführung einer Begründung sollte zur
Verbesserung der Leistung führen, bei
unbekannten Regeln - Für Vpn aus Hongkong sollte zusätzliche
Begründung bei Post-Aufgabe keinen Effekt haben
(weil Post-Regel und ihre Begründung ohnehin
bekannt ist). - Resultat
- Hypothesen bestätigt
- Deontische Struktur scheint ausschlaggebend zu
sein
42- Resultate aus Cheng Holyoak (1985)
korrekt
43Theorie der Abstrakten Regeln
- Menschen schliessen rational mithilfe einer
Mentalen Logik abstrakte, logikartige Regeln
(z.B. Modus Ponens), konkreter Inhalt wird
nicht beachtet - Fehler entstehen u.a. beim Enkodieren durch
Missverstehen oder Fehlinterpretation, z.B. - Übersetzen der Alltagssprache in formale
Sprache (Sie ist Schweizerin, aber sie mag
keinen Käse) - Falsche logische Operatoren wegen
inhaltlicher Annahmen (Wenn Du meinen Rasen
mähst, bekommst Du 10 Fr) Wird als Äquivalenz
interpretiert - Inhaltliche Annahmen aus Weltwissen (Sie
kann nur dann in Bibliothek arbeiten, wenn diese
geöffnet)
44- Abstract-rule Theory von Braine OBrien (z.B.
1991) - Die in der natürlichen Sprache formulierten
Prämissen werden enkodiert
(Verstehens-Mechanismus). Resultierende
Repräsentation im Arbeitsgedächtnis. - Beim direkten Schliessen Abstrakte Regeln
angewandt auf die Prämissen, um Konklusion
abzuleiten. - Anwendung dieser Regeln wird durch ein Kontroll-
und Koordinationsprogramm koordiniert
(z.B. Auswahl der relevanten Schlussregel an
bestimmtem Punkt)
45- drei Typen von Fehlern
- 1 Fehler beim Enkodieren (Verstehen)
- 2 Fehler bei der Koordination
- 3 Verarbeitungsfehler aufgund von
Aufmerksamkeitsfehlern,
Problemen mit Arbeitsgedächtnis - indirektes Schliessen bei Problemen ausserhalb
des Üblichen Schluss-Probleme (z.B.
abstrakte Version des Wason-Selektion Tasks
hier besteht die Aufgabe darin,
Testinstanzen zu finden) Menschen wenden an
und lernen andere nicht-logische,
bereichsspezifische Regeln (kann zu
systematischen Verzerrungen führen)
46- ANWENDUNG AUF KONDITIONALE SCHLÜSSE
- Theorien der Abstracten Regeln nehmen an Regel
wie Modus Ponens - bei Ketten von Wenn-dann Prämissen muss Regel
wiederholt angewendet werden
Zwischenergebnisse müssen gespeichert werden - Wenn ich hungrig werde,
wenn P, dann Q dann gehe ich spazieren
- Wenn ich spazieren gehe,
wenn Q, dann R dann fühle ich mich besser - ich bin hungrig
P - je länger die Kette, desto eher Fehler
47- Ketten von Schlussfolgerungen
- Braine et al (1984)
- Zuerst einfstufige Schlussfolgerungen (Thema
Buchstaben auf Tafel)z.B. Wenn ein T da ist,
gibt es ein L Ein T ist da Ist ein L
da?einstufige Schlussfolgerungen werden
praktisch fehlerfrei durchgeführt
(Schwierigkeitsmessungen bei verschiedenen
Schlussarten
48- Bearbeitung von mehrstufigen SchlusskettenAbhängi
ge Variablen zur Bestimmung der
Problemschwierigkeit Fehlerzahl Reaktio
nszeit subjektive SchwierigkeitVorhersage
der Schwierigkeit mehrstufiger Schlussketten aus
der Schwierigkeit der beteiligten einstufigen
Schlüsse (additiv) - Resultat Hohe Korrelation zwischen
vorhergesagter und beobachteter Schwierigkeit
mehrstufiger SchlusskettenStützt Regel-Theorie
49- Modus Tollenskeine eigene Regel verfügbar
- Wenn-dann - Satz muss zuerst umgedreht werden,
dann Modus Ponens ( d.h. mindestens zwei
Schritte notwendig) - Wenn es regnet, ist die Strasse nass
- ? Wenn die Strasse
nicht nass ist, regnet es nicht - Falsche Negation der Konsequenz Falscher
Schluss auf AntezedensEnkodierungsfehler z.B.
Äquivalenz statt Implikation Annahme,
dass es regnet die einzige Ursache ist, etc. - Kontext-Effekte ebenfalls durch Enkodierung
erklärt
50- Nach Braine OBrian abstrakter Wason
Selection Task gehört nicht zu den üblichen
Schluss-Problemen - daher FehlerGültigkeit von
Regel (entspricht Wahrheitswert von Aussage) mit
unsicherer Gültigkeit (unsicherer Wahrheitswert)
soll geprüft werden - Testinstanzen müssen gefunden werden(um zu
sehen, ob Regel stimmt)In deontischer Version
sollen Vpn Verletzung von Regeln feststellen,
deren Wahrheitswert nicht zur Debatte steht - dies einfacher - entspricht besser normalen
Schlussaufgaben - (Testinstanzen, um zu sehen, ob Regel verletzt
wird)
51- Hauptprobleme der Abstract-rule Theorie
- Verstehens-Mechanismus beim Enkodieren nicht
spezifiziert z.B. unterschiedliche Wirkung
des Kontexts wann wird welche Interpretation
gemacht, wann andere? Verstehensfehler werden
ad-hoc zur Erklärung eingeführt - Nur für einfache Aussagenlogik formuliert
Generalisierbarkeit auf andere Logikbereiche
unklar
52Modell - Theorie
- Johnson-Laird (z.B. 1983), Byrne
- Schliessen aufgrund mentaler Modelle
- Menschen konstruieren mentale Repräsentation
aufgrund der Prämissen und des Weltwissens.
Dabei werden logische Beziehungen häufig in
räumliche übersetzt - Fritz ist grösser als Max
Fritz - Max
- Max ist grösser als Beat Max
- Beat
- Kombination der beiden Modelle Fritz
Max Beat - Ist Beat grösser als Fritz? Schlussfolgerung
direkt ablesbar
53- zusätzliche Information
- Max ist grösser als
Florian - 3 Möglichkeiten (mögliche Modelle)
- Fritz Fritz Fritz
- Max Max Max
- Beat Beat Florian Florian
- Florian Beat
- Ist Beat grösser als Florian?
- Kann nicht eindeutig beantwortet werden
- ( Potts, 1975)
54- Modell-Theorie des Schliessens
- Deduktives Schliessen umfasst drei Prozesse
- Verstehen der Prämissen, um Modell zu bilden
- Beschreiben und Kombinieren von Modellen,
um eine
Konklusion zu ziehen
- Validierung der Konklusion durch Elimination
alternativer
Modelle - Zum Verstehen der Prämissen verschiedene
semantische Prozeduren und
Hintergrundwissen Die Modelle sind
spezifisch Enthalten nicht Variablen,
sondern Mentale Token (individuelle
mentale Platzhalter), z.B. visuelle
Vorstellungen, oder abstrakte mentale Token.
Modelle sind strukturanalog (d.h. bestimmte
Eigenschaften der realen Welt werden
abgebildet, z.B. räumliche Anordnung)
55- Gibt es mehrere Prämissen, müssen deren
Modelle zu (einem) integrierten Modell(en)
zusammengefasst werden - möglichst sparsame
Beschreibung Konklusion auf Basis des
intergrierten Modelles - Validierung der Schlussfolgerung über Suche nach
Gegenbeispielen oder alternativen Modellen. Wenn
kein derartiges Modell gefunden, Konklusion
gültig. Wenn ein falsifizierendes Modell
gefunden, weitersuchen nach Konklusion, die in
allen Modellen gültig ist.
56- Syllogismen
- z.B. Prämisse 1
- Einige Künstler sind Imker Einige A
sind B - Menschen konstruieren Initialmodelle mit
Beispielen
Künstler 1 Imker 1 zwei
Modelle ausgearbeitet Künstler 2 Imker 2
charakterisiert weitere mögliche
Modelle Dieses implizite Modell zunächst nicht
ausgearbeitet, aus Gründen der Sparsamkeit
57- Beispiel für mögliche weitere Modelle
- Künstler 3
- ( Künstler 3 designiert Individuum, das
Künstler ist, aber
nicht Imker ) - Diese Repräsentation korrekte Interpretation
der Prämisse
Einige A sind B
58- Erklärung für Fehler beim Schliessen
- Übersetzungsfehler
- Mangelnde Ausarbeitung von Modellen (Übersehen)
- Überforderung der Kapazität durch zu viele
Modelle - Modell empirisch gut bestätigt
59- Hauptprobleme der Modelltheorie
- Bei verschiedenen Problemen verschiedene
Formulierungen mit unterschiedlicher Zahl von
Modellen möglich- macht Vorhersagen basierend
auf der Zahl der Modelle beliebig( Notwendig
Regeln für Konstruktion von Modellen ) - Prozess der Validierung nicht ausreichend
ausgearbeitet - Prozess des Übersetzens / Verstehens nicht
spezifiziert
60BEREICHSSPEZIFISCHE REGEL - THEORIEN
(domain-specific)
- weniger allgemein als die beiden anderen Ansätze
- Konzentrieren sich auf Effekte der verschiedene
Versionen des Wason-Selection Task - Die meisten Bereichsspezifische Regel -Theorien
nehmen 2-Komponenten Prozess angenerelle
(abstrakte) Komponente wird vonbereichspezifische
n Regeln unterstützt
61- Pragmatische Schluss-SchemataBereichspezifische
Regeln für Erlaubnisse und VerpflichtungenCheng
Holyoak (1985), Cheng, Holyoak , Nisbett
Oliver (1986) Pragmatische Schluss-Schemata,
weil sensitiv für konkrete Situation - Vier Schemata für Wenn-Dann Beziehungen im
Zusammenhang mit Handlungen - (Erlaubnis- und Verbots/Verpflichtungsregeln)
62- Wenn eine Handlung ausgeführt werden soll,
müssen die Vorbedingungen erfüllt
sein - Wenn eine Handlung nicht ausgeführt werden soll,
brauchen die Vorbedingungen
nicht erfüllt zu sein - Wenn die Vorbedingungen erfüllt sind,
kann die Handlung ausgeführt werden - Wenn die Vorbedingungen nicht erfüllt sind,
darf die Handlung nicht ausgeführt
werden
63- Z.B. aus dem Alltag
- Wenn Du an der Universität studieren willst,
musst Du die Matura bestanden haben. - Wenn Dir Kollegin A etwas zu Deinem
Geburtstag schenkt, musst Du ihr auch
etwas zu ihrem Geburtstag schenken. - (Wenn Du den Brief zukleben willst, musst Du
die teurere Marke daraufkleben) In
Situationen, wo Schemata nicht appliziert werden
können Abstrakte Regeln oder ander
Schlussstrategien - Fehler wenn Situationen nicht leicht in
pragmatisches Schluss-Schema eingeordnet werden
können, oderwenn Regeln eines Schemas nicht mit
logischen Regeln übereinstimmen.
64Theorie der Soziale Kontrakte - Cosmides
(1989) Menschen verfügen über Regeln
(Darwinsche Algorithmen), die ihre Fähigkeiten
maximieren, Ziele in sozialen Situationen zu
erreichen. Evolutionäre Ausformung derartiger
Regeln. Cosmides konzentriert sich auf
Situationen, wo Menschen zum gegenseitigen
Vorteil kooperieren müssen Sozialkontrakt-Situat
ionen (Untermenge des Erlaubnis
Schemas) Standard Sozialkontrakt Wenn Du einen
Vorteil annimmst, dann musst Du die Kosten
bezahlen. Umgedrehter Sozialkontrakt Wenn Du die
Kosten bezahlst, dann hast Du einen Anspruch auf
den Vorteil.
65Annahme In der Evolution nicht nur diese Regeln
herausgebildet, sondern auch Mechanismen, die
erlauben, Menschen zu entdecken, die einen
sozialen Kontrakt brechen Betrug-Entdeckungs
Algorithmus Anwendung auf Wason-Selektion Task
(realistische Version) Standard-Sozialkont
rakt Betrug-Entdeckungs Algorithmus ?
korrekte Antwort Umgedrehter
Sozialkontrakt Betrug-Entdeckungs Algorithmus
? korrekte Antwort wenig
häufig Betrug-Entdeckungs-Mechanismus spricht
speziell an auf P und nicht-Q
66Ansatz kann bestimmte Ergebnisse mit Wason Task
erklären, aber nicht alle (z.B. deontische,
die nicht in Form sozialer Kontrakte sind -
z.B. im Kaufhaus Wenn eine Rechnung 30
überschreitet, muss sie vom Abteilungsleiter
kontrolliert werden.)
67ANALOGIESCHLÜSSE
(komplexes) Problemlösen Wissenschaft
(z.B. Atommodell,
Triebmodelle) Intelligenztests
( Grashalm Wiese ? Wald )
Kreativität Analogieschlüsse in Literatur
oft unter Induktives Schliessen bei Eysenck
Keane (20055) im Kapitel 14
Creativity and discovery
68Analoges Denken involviert Abbildung der
konzeptuellen Struktur aus
Modell-Gegenstandsbereich (base domain) in
einen Ziel-Gegenstandsbereich (target
domain) (z.B.
Planetensystem als base-domain
Atomaufbau als Ziel-Gegenstandsberei
ch) Zwei zentrale Prozesse 1
Analogie-AbrufGegenstandsbereich muss gefunden
werden, der zum Problem passt 2
Analogie-Abbildungkorrespondierende Konzepte in
beiden Bereichen gesucht, d.h. gleiche Merkmale
oder Relationen in beiden Gegenstandsbereichen (
matching )
69Relationen 2. Odnung(zwischen Relationen)(Anzieh
ung Ursache für Umkreisen)
aus Müsseler Prinz (2002)
70Gick Holyoak (1980, 1983)
Experimente mit Strahlungsproblem (Duncker, 1945)
Arzt soll Tumor im Körperinneren durch
radioaktive Bestrahlung zerstören. Sind die
Strahlen stark genug, wird der Tumor zerstört,
aber auch das umgebende Gewebe. Sind die Strahlen
so schwach dosiert, dass das umgebende Gewebe
nicht geschädigt wird, wird auch der Tumor nicht
angegriffen.
Lösung Mehrere schwache Strahlungsquellen, die
im Tumor gebündelt werden Ca. 10 der Vpn finden
Lösung Eher unsystematische Untersuchung zur
Verbesserung der Leistung bereits von Duncker
(Linsen-Analogie)
71Gick Holyoak (1980, 1983) Können Vpn einen
Analogieschluss von einem Problem auf das nächste
herstellen? UV Teil der Vpn hörte und
memorisierte vor
Bestrahlungsproblem die Festungsgeschichte Ein
General greift mit seinen Truppen eine Festung
an. Er kann aber seine Truppen nicht auf einmal
zur Festung bringen, da die Zufahrtsstrassen
vermint sind, mit Minen, die auf grössere
Menschenkonzentrationen ansprechen. Daher teilt
er seine Truppen in kleine Gruppen auf, die auf
verschiedenen Strassen zur Festung gelangen und
sich dort versammeln.
72 Resultate
richtige Lösung Vpn ohne
Festungsgeschichte ca. 10 Vpn mit
Festungsgeschichte ca. 40 ohne Hinweis
Vpn mit Festungsgeschichte
mit Hinweis auf mögliche Analogie ca. 40
73- Generelle Ergebnisse
- Mehrheit der Problemlöser scheint eher
Schwierigkeiten zu haben, semantisch entfernte
Analogien zu nutzen (ohne Hinweis). - Inhaltliche Ähnlichkeit zwischen
Gegenstandsbereichen erleichtert Abbildung - Werden Teile des Gegenstandsbereiches betont
oder als wichtig bezeichnet (z.B. Instruktion),
werden sie eher in der Abbildung verwendet.