Title: Advances in Host-Guest Chemistry
1Advances in Host-Guest Chemistry
- Megan Jacobson
- University of Wisconsin-Madison
- April 21, 2005
2Outline
- Background
- Industrial Applications
- Chemical Applications
- Reactions and Catalysis
- Scavengers
- Receptors
- Sensors
- Host Design
- Conclusions
3Host-Guest Chemistry
- Host-Guest Chemistry involves
- Two or more molecules, a host and a guest,
involved in non-bonding interactions to form a
supramolecular complex. - According to Cram
- The host component is a molecule or ion whose
binding sites converge in the complex - The guest component is any molecule or ion whose
binding sites diverge in the complex
Supramolecular Chemistry, Steed, J. W. Atwood J.
L. John Wiley and Sons, Ltd, 2000.
4Early Development of Host-Guest Chemistry
Szejtli, J. Chem. Rev. 1998, 98,
1743-1753 Dodziuk, H. Introduction to
Supramolecular Chemistry. Kluwer Academic
Publishers, 2002. Supramolecular Chemistry,
Steed, J. W. Atwood J. L. John Wiley and Sons,
Ltd, 2000.
5Guest Complexation
- Complexes stabilized by non-covalent
interactions - Hydrophobic complexation
- Hydrogen bonding
- Aromatic interactions ??? and edge-face
- Ion-ion and dipolar interactions
Szejtli, J. Chem. Rev. 1998, 98,
1743-1753 Whitlock, B.J. Whitlock, H. W. J. Am.
Chem. Soc. 1994, 116, 2301. Nassimbeni, L. R.
Acc. Chem. Res. 2003, 36, 631. www.yakko.pharm.kum
amoto-u.ac.jp/KH/modb/molst.html
6Advantages of Complexation
- Altered solubility
- Often increased water solubility
- Sequestration and precipitation of products
- Controlled volatility
- Encapsulation of gases
- Perfume release
- Altered reactivity
- Selective catalysis
- Stabilized guests
- Introduction to Supramolecular Chemistry
Dodziuk, H, Kluwer Academic Publishers, 2002. - Separations and Reactions in Organic
Supramolecular Chemistry Lehn, J.-M. Ed Toda,
F. Bishop, R. Wiley Sons, Ltd, 2004. - www.yakko.pharm.kumamoto-u.ac.jp/KH/modb/molst.htm
l
7Structure of Cyclodextrins
Number of Glucose Units A (Å) B (Å)
?-CD 6 5.3 14.6
?-CD 7 6.5 15.4
?-CD 8 8.3 17.5
?-Cyclodextrin (?-CD)
Szejtli, J. Chem. Rev. 1998, 98,
1743-1753 DSouza, V. T. Lipkowitz, K. B. Chem.
Rev. 1998, 98, 5, 1741.
8Manufacture of CDs
- Produced enzymatically from starch by
cyclodextrin glucosyl transferase - Precipitation of desired product CDs using guest
molecules to select CD size - ?-CD from 1-decanol
- ?-CD from toluene
- ?-CD from cyclohexadecanol
Cyclodextrin Glucosyl Transferase
Szejtli, J. Chem. Rev. 1998, 98,
1743-1753 www.xray.chem.rug.nl/ Gallery1.htm
9Areas of CD Research
Szejtli, J. Chem. Rev. 1998, 98, 1743-1753
10Cyclodextrin Complexed Pharmaceuticals
- Prostavasin (alprostadil alphadex, PGE1)
- Prostaglandin-based treatment of peripheral
circulatory disorders - Instability requires intra-arterial
administration in uncomplexed form. - ?-CD complex improved metabolic stability,
injectable formulation. - Schwartz Pharma product
Davis, M. E. Brewster, M.E. Nature Rev. 2004,
3, 1023-1035
11Cyclodextrin Complexed Pharmaceuticals
- Sporanox (itraconazole)
- Antifungal triazole
- Aqueous solubility estimated 1 ng/mL
- Hydroxypropyl ?-CD complex improves solubility to
10 mg/mL - First orally available drug effective against
Candida spp. and Aspergillus spp. - Janssen product
Davis, M. E. Brewster, M.E. Nature Rev. 2004,
3, 1023-1035
12Calixarenes
- Vase shaped cavity
- Condensation products of phenols and formaldehyde
- Common host starting point
- Low water solubility
- Many points for further functionalization
- Often used as scaffolds for sensors.
Ikeda, A. Shinkai, S. Chem.Rev. 1997, 97,
1713 Calixarenes 2001 Asfari, Z. Bohmer, V.
Harrowfield, J. Vicens, J. Kluwer Academic
Publishers 2001. filippoberio.com/Tradition/Histor
y.asp
13Possible Applications of Calixarenes
- Ion Sensors
- Selective ion sensing electrodes
- Optical transduction sensors
- Fluorescent sensors
- Separations
- Chiral recognition
- Chromatographic stationary phases
- Solid phase extraction
McMahon, G. OMalley, S. Nolan, K. Diamond, D.
ARKIVOC, 2003, vii, 23.
14Outline
- Background
- Industrial Applications
- Chemical Applications
- Reactions and Catalysis
- Scavengers
- Receptors
- Sensors
- Host Design
- Conclusions
15Directed Aromatic Chlorination
- gt95 para chlorination observed with ?-CD
- 1.48 1.0 p/o without CD
- Internal delivery of Cl from 2 OH
- Methylation of all but C-3 2 OH groups affords
4.4x tighter binding and improved selectivity
Breslow, R. Campbell, P. J. Am. Chem. Soc. 1969,
91, 3085 Breslow, R. Kohn, H. Siegel, B. Tet.
Lett. 1976, 20, 1645-1646
16Cavity Accelerated Diels-Alder
- Requires small reaction components
- ?-CD shows rate accelerations of up to 1800 x
rates in isooctane and 2-10 x those in water for
small substrates. - ??-CD inhibits reaction even with small
substrates.
Too large for cavity
Rideout, D. C. Breslow, R. J. Am. Chem. Soc.
1980, 102, 7817-7818
17Cavity Accelerated Diels-Alder
- Modest increase in diastereoselectivity observed
in cyclodextrins over reactions in water
Dienophile Endo / Exo In Water Endo / Exo in 0.015M ?-CD
1.10 0.05 2.2 0.08
47 4 69 4
48.5 4 112 5
Schneider, H-J. Sangwan, N. K. Angew. Chem.
Int. Ed. Engl. 1987, 26(9), 896-897
18Photochemical Control
- Products of UV irradiation (? 312 nm) of CD
complexed E-stilbene depend on cavity size.
Herrmann, W. Wehrle, S. Wenz, G. Chem. Commun.
1997, 1709
19Photochemical Control
CD Reaction Time (h) E Stilbene Z Stilbene Trans -Dimer Cis-Dimer Phenanthrene
None 24 10 62 7 2 19
?-CD 24 20 60 0 0 20
?-CD 24 16 83 0 0 1
?-CD 72 0 0 79 19 2
- 11 complexation in ? or ?-CD favors
isomerization. - Complexation in ?-CD nearly prevents phenanthrene
formation. - 21 Complexation in ?-CD favors dimerization.
Herrmann, W. Wehrle, S. Wenz, G. Chem. Commun.
1997, 1709
20Biomimetic Steroid Hydroxylation
- Regioselective for C-6
- Stereoselective for the ? face.
- 10 equivalents of PhIO oxidant and pyridine
- Reaction in water
Breslow, R. Zhang, X. Huang, Y. J. Am. Chem.
Soc. 1997, 119, 4535-4536. Breslow, R. Huang,
Y. Zhang, X. Yang, J. Proc. Natl. Acad. Sci.
USA. 1997, 94, 11156-58.
21Biomimetic Steroid Hydroxylation
- t-Butyl-Phenyl groups form CD complex
- Sulfonate groups improve water solubility.
3-5 catalytic turnovers
Breslow, R. Zhang, X. Huang, Y. J. Am. Chem.
Soc. 1997, 119, 4535-4536. Breslow, R. Huang,
Y. Zhang, X. Yang, J. Proc. Natl. Acad. Sci.
USA. 1997, 94, 11156-58.
22Biomimetic Steroid Hydroxylation
Yang, J. Breslow, R. Angew. Chem. Int. Ed.
2000, 39, 15, 2692-2694
23Biomimetic Steroid Hydroxylation
- Oxidative stability of catalyst greatly improved
by fluorination - - 95 yield
- 95 turnovers
- at 1 catalyst.
Breslow, R. Gabriele, B. Yang, J. Tet. Lett.
1998, 39, 2887-2890
24Biomimetic Steroid Hydroxylation
- meta-CD placement and altered tether points give
C-9 OH - para-CD placement gives a mixture of C-9 and C-15
OH
Breslow, R. Yan, J. Belvedere, S. Tet. Lett.
2002, 43, 363-365
25Antioxidant Enzyme Mimic
- Glutathione Peroxidase (GPX) mimic - antioxidant
activity - Catalyzes reduction of hydroperoxides by
glutathione using natural coenzymes and cofactors - Prevents oxidative damage to biological systems
2-TeCD
Luo, G. et al. ChemBioChem 2002, 3, 356-363
26Antioxidant Enzyme Mimic
- Superior to Ebselen, a common GPX mimic
- Slows damage to mitochondria by hydroperoxides
- May be useful in bioelectric devices
GPX mimic Hydroperoxide Activity (U ?m-1)
Ebselen H2O2 0.99
PhSeSePh H2O2 1.95
2-SeCD H2O2 7.4
2-TeCD H2O2 46.7
2-TeCD tBuOOH 32.8
2-TeCD Cumene hydroperoxide 87.3
GSH Glutathione, NADPH ?-nicotinamide
adenine dinucleotide phosphate
Luo, G. et al. ChemBioChem 2002, 3, 356-363
27Outline
- Background
- Industrial Applications
- Chemical Applications
- Reactions and Catalysis
- Scavengers
- Receptors
- Sensors
- Host Design
- Conclusions
28Anesthetic Scavenger
- Rocurionium bromide is a common neuromuscular
blocking drug. - Conventional reversal medications have many
side-effects. - Org 25969 is currently in Phase II Human Clinical
Trials.
Rocurionium Bromide
Org 25969
Zhang, M-Q. et al. Angew. Chem. Int. Ed. 2002,
41, 2, 265-270
29Anesthetic Scavenger
Host EC50 ?M Max Reversal
?-CD gt360 9.7
?-CD gt360 29
?-CD 34.6 94.1
Org 25969 1.2 95.1
Data from mouse hemidiaphram studies
- Extending cavity depth from 7.9 to 11 Å greatly
improves complexation. - Patients show significant recovery in minutes.
Zhang, M-Q. et al. Angew. Chem. Int. Ed. 2002,
41, 2, 265-270
30Outline
- Background
- Industrial Applications
- Chemical Applications
- Reactions and Catalysis
- Scavengers
- Receptors
- Sensors
- Host Design
- Conclusions
31Choline Receptor
- Trimethylammonium moiety challenges receptor
design - Quaternary ammonium does not allow hydrogen
bonding - Roughly spherical shape limits binding site
design
Ballester, P. Shivanyuk, A. Far, A. R. J.
Rebek Jr. J. Am. Chem. Soc. 2002, 124,
14014-14016
32Choline Receptor
- Complex stablized by deep aromatic cavity
- Larger NR4 ions excluded from binding
- Vase shaped complex stitched together by DMSO
- Weak H-bond from alcohol to amine (0.6 kcal /mol)
Ka 1.2 x 104
Ballester, P. Shivanyuk, A. Far, A. R. J.
Rebek Jr. J. Am. Chem. Soc. 2002, 124,
14014-14016
33Receptor Synthesis
Ballester, P. Shivanyuk, A. Far, A. R. J.
Rebek Jr. J. Am. Chem. Soc. 2002, 124,
14014-14016
34Outline
- Background
- Industrial Applications
- Chemical Applications
- Reactions and Catalysis
- Scavengers
- Receptors
- Sensors
- Host Design
- Conclusions
35Sensor Requirements
- Selective binding
- Detection at low levels
- Fast response for dynamic sensing
- Tolerance for changing conditions
- Clear, intense signaling
Bell, T.W. Hext, N. M. Chem. Soc. Rev. 2004, 33,
589. Pinalli, R, Suman, M. Dalcanale, E. Eur.
J. Org. Chem. 2004, 451.
36Fluorescent Hg2 Sensor
- Calix4-aza-crown binding site
- Maintains activity in aqueous solution
- Dansyl fluorescence quenched by binding Hg2
Chen, Q-Y Chen, C-F, Tet. Lett. 2005, 46, 165-168
37Fluorescent Hg2 Sensor
- Selective binding over Li, Na, Mg2, K, Ca2,
Mn2, Co2, Ni2, Ag, Ba2 - Little selectivity over Cu2, Zn2, Cd2, Pb2
- Ka 1.31 x 105 M-1
- Detection Limit 4.1x10-6 mol /L
Chen, Q-Y Chen, C-F, Tet. Lett. 2005, 46, 165-168
38Radical Cation Sensor for Nitric Oxide
Green
- Radical cation stabilized by electron-rich
substituents - Stable at room temperature
Rathore, R. Abdelwahed, S.H. Guzei, I. A. J. Am.
Chem. Soc. 2004, 126, 13582-13583
39Synthesis of NO Binding Calixarene
Rathore, R. Abdelwahed, S.H. Guzei, I. A. J.
Am. Chem. Soc. 2004, 126, 13582-13583
40Radical Cation Sensor for Nitric Oxide
- Electron deficient cavity binds electron-rich
nitric oxide - Dramatic color change on binding
- Ka gt 108 M-1
Blue
Rathore, R. Abdelwahed, S.H. Guzei, I. A. J. Am.
Chem. Soc. 2004, 126, 13582-13583
41Outline
- Background
- Industrial Applications
- Chemical Applications
- Reactions and Catalysis
- Scavengers
- Receptors
- Sensors
- Host Design
- Conclusions
42New Host Design
- Apple peel helix completely encloses water
molecule
Garric, J. Leger, J-M. Huc, I. Angew. Chem.
Int. Ed. 2005, 44, 1954-1958
43New Host Design
- Soft ball like bimolecular assembly
- Chiral guest templates chirality of assembled
host - 8 hydrogen bonds stitch complex together
-
Rivera, J. M. Craig, S. L. Martin, T. Rebek,
J. Jr. Angew. Chem. Int. Ed. 2000, 39(12)
2130-2132
44New Host Design
Guest exchange is faster than decomposition of
host molecule.
Rivera, J. M. Craig, S. L. Martin, T. Rebek,
J. Jr. Angew. Chem. Int. Ed. 2000, 39, 12
2130-2132
45Outline
- Background
- Industrial Applications
- Chemical Applications
- Reactions and Catalysis
- Scavengers
- Receptors
- Sensors
- Host Design
- Conclusions
46Summary
- Host-guest chemistry is applied in
- Catalysis
- Scavenging
- Sensors
- Pharmaceuticals - both drugs and delivery
- Mimicking and understanding biological systems
- New host design opens more fields for research
47Conclusions
The field of host-guest chemistry has matured
sufficiently to have utility in many important
and interesting applications and remains a
fruitful area for research.
48Acknowledgements
Professor Helen E. Blackwell
- Brian Pujanauski
- Adam Siegel
- Emily Guerard
- Jamie Ellis
- Chris Paradise
- Katie Alfare
- Kara Waugh
- Blackwell Group Members
- Matt Bowman
- Qi Lin
- Ben Gorske
- David Miller
- Jenny ONeill
- Sarah Jewell
- Rachel Wezeman
- Grant Geske