Title: STATISTIK DESKRIPTIF: UKURAN KECENDERUNGAN MEMUSAT
1STATISTIK PENDIDIKANEDU5950SEM1 2013-14
- STATISTIK DESKRIPTIFUKURAN KECENDERUNGAN MEMUSAT
2UKURAN KECENDERUNGAN MEMUSAT
- Teknik penggambaran data telah memberi kita satu
cara memperihal data dalam bentuk jadual
frekuensi, carta palang atau pai, histogram,
poligon frekuensi, dan jadual silang. - Analisis ini menjelaskan pola taburan skor-skor
ataupun frekuensi bagi kategori-kategori
tertentu. - Ia memberi gambaran yang menyeluruh tetapi tidak
menunjukkan sesuatu tumpuan atau kecenderungan. - Ia juga tidak merupakan bentuk yang ringkas.
3- Oleh itu bagi mendapatkan gambaran yang ringkas
serta kecenderungan kepada sesuatu
nilai/kategori, maka UKURAN KECENDERUNGAN MEMUSAT
boleh digunakan. - Ukuran ini merupakan ukuran tumpuan bagi sesuatu
taburan. - Ia boleh mengambil ukuran tumpuan sebagai
skor/nilai (data kuantitatif) ataupun kategori
(data kualitatif).
4TIGA JENIS UKURAN KECENDERUNGAN MEMUSAT
- MOD
- MEDIAN/PENENGAH
- MIN/PURATA
5MOD
- MOD ukuran skor/nilai/kategori yang paling kerap
dalam sesuatu taburan, yang juga menunjukkan
skor/nilai/kategori yang lazim (typical). - Mod bagi data kategorikal adalah kategori yang
terkerap (sekolah menengah biasa)
6Maklumat Demografi Pengetua
Latar Belakang Latar Belakang Frekuensi Frekuensi
Jantina Lelaki 119 68.4
Jantina Perempuan 55 31.6
Kumpulan Etnik Melayu 121 69.5
Kumpulan Etnik Cina 42 24.1
Kumpulan Etnik India 4 2.3
Kumpulan Etnik Bumiputra Sabah/Sarawak 7 4.0
Pencapaian Akademik Bacelor 12 7.1
Pencapaian Akademik Diploma 29 17.2
Pencapaian Akademik STPM 55 32.5
Pencapaian Akademik SPM 70 41.4
Pencapaian Akademik SRP 3 1.18
7Jadual 1 Taburan Responden Guru Kanan
Berdasarkan Umur
Umur Frekuensi Peratus
25-30 tahun 6 2.8
31-36 tahun 9 4.3
37-42 tahun 68 32.2
43-48 tahun 91 43.1
49-54 tahun 33 15.6
Lebih 55 tahun 4 2.0
Jumlah 211 100
8Jadual 30 Taburan Responden Guru Kanan
Berdasarkan Kaum
Kaum Frekuensi Peratus
Melayu 154 73.0
Cina 41 19.4
India 14 6.6
Lain-lain 2 1.0
Jumlah 211 100
9MOD
- Set A91 68 85 75 75 77 90 80 95 mod
adalah 75 (unimod) - Set B60 80 80 75 75 67 90 80 75 mod
adalah 75 dan 80 (dwimod) - Set C 70 70 84 84 80 80 20 20 56 56
taburan ini tidak mempunyai mod. - Kes 1 30 35 28 42 45 36 40 41 48
- Kes 2 30 30 34 35 28 45 45 45 40 41 46
48
10MEDIAN
- Median adalah skor yang di tengah-tengah sesuatu
taburan. - Ia merupakan skor di mana terletaknya 50
skor-skor di bawahnya dan 50 skor-skor di
atasnya. - Median dapat ditentukan dengan menyusun skor-skor
mengikut aturan menurun atau menaik dan skor di
tengah di kenal pasti. - Kes 1 30 35 28 42 45 36 40 41 48
- Kes 2 30 30 34 35 28 45 45 45 40 41 46
48
11- Kes 1
- 30 35 28 42 45 36 40 41 48
- 28 30 35 36 40 41 42 45 48
- 28 30 35 36 40 41 42 45 48
- Skor ke (n1)/2
- Kes2
- Kes 2 30 30 34 35 28 45 45 45 40 41 46
48 - Skor ke 12/2- skor ke 6, skor ke-7
- 28 30 30 34 35 40 41 45 45 45 46 48
- Purata kedua-dua skor 40 41 40.5
- Purata bagi skor ke n/2 dan skor ke n/2 1
12MIN
- Min adalah ukuran pukul rata dengan itu mula-mula
lagi dipanggil purata. - Ia ditentukan dengan mengambil jumlah kesemua
skor-skor dalam taburan dan dibahagikan dengan
bilangan skor-skor. - Ia sangat kerap digunakan untuk data kuantitatif
seperti IQ, kecergasan fizikal, tahap
kebimbangan, tahap pengetahuan.. - Min juga boleh digunakan untuk membuat
perbandingan antara dua atau lebih set data yang
diperoleh.
13MIN
- Kes 1 30 35 28 42 45 36 40 41 48
- 345/9 38.3333
- 38.33
- Kes 2 30 30 34 35 28 45 45 45 40 41 46
48 - 467/12 38.9166
- 38.92
14UKURAN KECENDERUNGAN MEMUSAT BAGI TABURAN
BERKUMPUL
- MOD KATEGORI YANG PALING KERAP
- MEDIAN SKOR TENGAH
- MIN SKOR PURATA
15- An instructor recorded the average number of
absences for his students in one semester. For a
random sample the data are
2 4 2 0 40 2 4 3 6
Calculate the mean, the median, and the mode
Mean
n 9
Median Sort data in order
0 2 2 2 3 4 4 6 40
The middle value is 3, so the median is 3.
Mode The mode is 2 since it occurs the most.
16- An instructor recorded the average number of
absences for his students in one semester. For a
random sample the data are
2 4 3 0 10 2 5 4 6
Which is the most appropriate measure of central
tendency?
Mean The average value is 4
Median
The middle value is 3, so the median is 4.
Mode The mode is 2 and 4 since it occurs
the most.
17Measures of central tendency and its location in
a distribution Shapes of Distributions
Symmetric
Uniform
mean median
Skewed right
Skewed left
Mean gt median
Mean lt median
18KEPENCONGAN
- Data yang digambarkan boleh dianggarkan bentuk
taburannya dengan mengguna skor-skor min, median
dan mod. - Bagi taburan yang mana minmedianmod maka
taburan ini dipanggil normal. - Bagi taburan yang mana mingtmediangtmod maka
taburannya dipanggil pencong ke kanan atau
positif. - Bagi taburan yang mana minltmedianltmod maka
taburannya dipanggil pencong kiri atau negatif.
19 Jenis data
- ? Data mentah skala ordinal /sela/nisbah
-
- 5 8 9 7 6 8
- 7 6 5 3 7 8
- ? Data berkumpul (secara individu)
-
- X 25 28 30 34 38 43 45
- f 6 9 12 17 15 8 4
- ? Data berkumpul (berselang)
-
- Group 21-30 31-40 41-50
- f 27 32 12
Group f 21-30 27 31-40
32 41-50 12
20Raw / Individual Data
5 8 9 7 6 8 7 6 5 3 7 8
21Individual Grouped Data
- X f fX
- 6
- 9
- 12
- 17
- 15
- 8
- 45 4
22Grouped Data
Group f 21-30 27 31-40
32 41-50 12
23Measures of Central Tendency
Mode The value with the highest frequency
- Median The point at which an equal number of
values fall above and fall below it. - Mean The sum of all data values divided by the
number of values - For a population
24- Activity I - Calculating MCT
- Calculate mode, median, and mean for the three
data sets - RAW SCORES
- ? Mode -The value with the highest frequency (4)
is 7 - Mode 7
- ? Median - Data must be arranged in an array
- ML (151) / 2 8
- i.e. Median is the average of the 8th values
- Median 7
-
- ? Mean
Data set 3 7 4 7 5 7 5 8 6 8 6 8 6 9 7
25- Activity II - Calculating MCT
- GROUPED Frequency distribution
- ? Mode The value with the highest frequency
(17) is 34 - Mode 34
- ? Median
- Md (711) / 2 36
- The 36th value is corresponding to 34
- Md 34
- ? Mean
26- Activity III - GROUPED Frequency
distribution - Mean Calculated based on class mid-point (m)
- ? n 71 2370.5
Sfm
Sfm n
X
2370.5 71
33.387
27Data set Group f cf
m 21 30 27 27 25.5 31 40
32 59 35.5 41 50 12
71 45.5 71 71
- Cont.
-
- ? Median
- Md (711) / 2 36
- The value 36th is located in the 31 40 class
- ? L 30.5 i 10 F 27 32
30.5 10 (0.2656) 30.5 2.656 33.156
Md L i
Md 30.5 10
28- WORKED EXAMPLE 1 Calculating Measures of
Central Tendency - Calculate mode, median and mean for the data sets
- 1. Raw data
- ? Mode The value with the high
- frequency (4) is 14
- Mode 14
- ? Median Data must be arranged in array
- ML (211) / 2 11
- i.e. median is the average of the 11th value
- Md 15
- ? Mean
Data set 10 12 14 17 20
21 10 14 15 18 20 11 14
15 19 20 12 14 17 19 21
SX n
333 21
X
15.857
29- WORKED EXAMPLE 2 Calculating Measures of
Central Tendency - 2. Frequency distribution
- ? Mode The value with the highest frequency
(21) is 78 - Mode 78
- ? Median
- ML (681) / 2 34.5
- The 36th value is corresponding to 78
- Md 78
- ? Mean
30X f cf f . X
65 10 10 650
74 13 23 962
78 21 44 1638
86 15 59 1290
93 9 68 837
Total 68 5377
31- WORKED EXAMPLE 3 Calculating Measures of
Central Tendency - 3. Grouped Frequency distribution
- ? Modal class class 51-75
- ? Median
- ML (551) / 2 28
- The value 28th is located in the 51 75 class
- ? L 51 i 25 F 15 23
Data set Group f cf
m 26 50 15 15 38 51 75
23 38 63 76 100 17
55 88 55
Total
51 25 (0.5435) 51 13.587 64.587
Md L i
Md 5125
32- Cont.
- ? Mean Calculated based on class mid-point (m)
- ? n 55 3515
Sfm
Sfm n
X
3515 55
Group Midpoint Frequency F . Xmidpt
26-50 38 15 570
51-75 63 23 1449
76-100 88 17 1496
55 3515
63.909
33WORKED EXAMPLE 4 Calculating Measures of
Central Tendency
Minutes Spent on the Phone
- 102 124 108 86 103 82
- 71 104 112 118 87 95
- 103 116 85 122 87 100
- 105 97 107 67 78 125
- 109 99 105 99 101 92
34Calculate the mean, the median, and the mode of
this grouped data
Midpoints 72.5 84.5 96.5 108.5 120.5
f x Midpoint 217.5 422.5 772.0 976.5 602.5
2991 30
99.7
35- Grouped frequency distribution
- ? Locate the median class that contains the ML
- ? Then calculate median using the formula
- Md L i
-
- where L lower boundary of the class with median
- i class interval
- n number of cases (sample size)
- F cumulative frequency before the
- median class
- frequency of the class with median
-
f
f
md
36Calculate the mean, the median, and the mode of
this grouped data
Midpoints 72.5 84.5 96.5 108.5 120.5
Cumulative f 3 8 16 25 30
n 30
I 12
L 90.5
F 8
fmd 8
37MIN BAGI DATA BERKUMPUL
- Min masih lagi jumlah semua skor dan dibahagikan
dengan bilangan skor-skor. - Oleh itu, bagi setiap skor/kelas yang berkumpul
maka perlu ditentukan jumlah pada skor/kelas
tersebut, kemudian jumlahkan kesemua skor-skor
tersebut dan dibahagikan dengan jumlah bilangan
bagi taburan tersebut.
38MIN BAGI DATA BERKUMPUL
- L1 Tentukan nilai-nilai titik-tengah bagi
setiap sela/kelas - X titik-tengah - L2 Kirakan jumlah skor bagi setiap
sela/kelas f x X titik-tengah - L3 Jumlahkan semua nilai f x X titik-tengah
- L4 Bahagikan jumlah tersebut dengan bilangan
skor dalam taburan.
39LATIHANPENGIRAAN MIN (DATA BERKUMPUL)
KELAS FREKUENSI TITIK TENGAH
5-9 2 7
10-14 11 12
15-19 26 17
20-24 17 22
25-29 8 27
30-34 6 32
40PENGIRAAN MIN DATA BERKUMPUL
KELAS FREKUENSI TITIK TGH FREK X TITIK TENGAH
5-9 2 7 2X714
10-14 11 12 11X12132
15-19 26 17 26X17442
20-24 17 22 17X22374
25-29 8 27 8X27216
30-34 6 32 6X32192
70 1370
41MEDIAN BAGI DATA BERKUMPUL ATAU SEKUNDER
- L1 Tentukan bilangan skor dan bahagi dengan 2
- L2 Tentukan kelas yang mengandungi median
- L3 Tentukan had bawah sebenar (sempadan kelas)
bagi kelas tersebut - L4 Tentukan F nilai frekuensi bagi kelas
sebelum terdapat median - L5 Tentukan fm bilangan skor dalam kelas yang
terdapat median - L6 Tentukan n bilangan skor dalam taburan
- L7 Tentukan saiz atau sela kelas
- L8 Masukkan nilai-nilai yang didapati dalam
formula
42LATIHANPENGIRAAN MEDIAN (DATA BERKUMPUL)
KELAS FREKUENSI FREK. KUMULATIF
5-9 2 2
10-14 11 13
15-19 26 39
20-24 17 56
25-29 8 64
30-34 6 70
43Use of Mode
- Relevant for raw and frequency distribution data.
- Mode corresponds to value with the highest
frequency. - For raw data, count frequency for each value
where mode is the value with the highest
frequency. - For frequency distribution data, locate the value
the highest frequency. - Mode is not susceptible to extreme values.
- A data can have one (unimodal), two (bimodal) or
multiple modes.
44Use of Median
- Relevant for raw and frequency distribution data.
- Median corresponds to the middle value in the
distribution. - Median is not susceptible to extreme values.
- Median is useful for skewed distribution or
distribution with extreme scores. - Median does change in value when there exist
extreme scores, unlikely mean, which will be
affected by extreme scores.
45Use of Mean
- The most frequently used MCT
- However it is very much susceptible to the
presence of extreme values - Mean is used when the distribution is normal.
- Mean is also used in calculation of the
statistic. - ex. t-test
- Formula
Raw data
Frequency Distribution
Grouped Freq. distribution
SfX n
X
46Descriptive Statistics
The closing prices for two stocks were recorded
on ten successive Fridays. Calculate the mean,
the median and the mode for each.
Stock A Stock B
46 33 56 42
57 48 58 52
61 57 63 67
63 67 67 77
77 82 77 90
47Descriptive Statistics
The closing prices for two stocks were recorded
on ten successive Fridays. Calculate the mean,
the median and the mode for each.
Stock A Stock B
56 33 56 42
57 48 58 52
61 57 63 67
63 67 67 77
67 82 67 90
48Measures of Central Tendency and Variability
- Both these measures allow description of a
distribution as a whole in a quantitative
(numerical) manner. - MEASURES OF CENTRAL TENDENCY indicate central
measurement representing the distribution of data
- MEAN, MEDIAN ,MODE. - MEASURES OF VARIABILITY indicate the extent to
which scores are different from each other, are
dispersed, or spread out - RANGE, MEAN DEVIATION,
VARIANCE, STANDARD DEVIATION.