Title: Synchronous Sequential Circuit Analysis
1- Synchronous Sequential Circuit Analysis
2Synchronous Sequential Circuit
- State Memory A set of n edge-triggered
flip-flops that store the current state of the
machine - All flip-flops are triggered from the same master
clock signal - All change state together
- Combinational circuit
- Next state logic
- Output logic Mealy and Moore
Next State
Current State
3Mealy Model
next state F (current state, inputs) outputs
G (current state, inputs)
4Moore Model
next state F (current state, inputs) outputs
G (current state)
5Analysis - Goals
- Characterize as Mealy or Moore machine
- Determine next state equations, i.e., find the
function F - next state F (current state, inputs)
- Determine output equations
- Meally outputs F (current state, inputs), or
- Moore outputs F (current state)
- Express as machine behavior
- State table, or
- State diagram
- Formulate English description of machine behavior
6An example sequential circuit
- A sequential circuit with two JK flip-flops
- State or memory Q1Q0
- One input X One output Z
7State table of example circuit
8Output Equations
- From the diagram, you can see that
- Z Q1Q0X
- Mealy model circuit !!!
9Next State Equations Q(t1)
- Find the flip-flop input equations/excitation
equations - Substitute excitation equations in the
flip-flops characteristic equation
J1 X Q0 K1 X Q0 J0 X Q1 K0 X
10Next State Equations Q(t1)
- Excitation equations
- J1 X Q0 and K1 X Q0
- J0 X Q1 and K0 X
- Characteristic equation of the JK flip-flop
- Q(t1) KQ(t) JQ(t)
- Next state equations
- Q1(t1) K1Q1(t) J1Q1(t)
- (X Q0(t)) Q1(t) X Q0 (t)
Q1(t) - X (Q0(t) Q1(t) Q0(t) Q1(t))
- X (Q0(t) ? Q1(t))
- Q0(t1) K0Q0(t) J0Q0(t)
- X Q0(t) (X Q1(t)) Q0(t)
- X Q0(t) Q1(t)
11State Table Next State Equations
- Q1(t1) X (Q0(t) ? Q1(t))
- Q10, Q00, X 0 gt Q1(t1) 0
- Q0(t1) X Q0(t) Q1(t)
- Q10, Q00, X 0 gt Q0(t1) 0
0 0
12State Table Next State Equations
- Q1(t1) X (Q0(t) ? Q1(t))
- Q10, Q01, X 1 gt Q1(t1) 0
- Q0(t1) X Q0(t) Q1(t)
- Q10, Q01, X 1 gt Q0(t1) 1
0 0
0 1
13State Table Next State Equations
- Q1(t1) X (Q0(t) ? Q1(t))
- Q0(t1) X Q0(t) Q1(t)
14State Table Characteristic Table
- The general JK flip-flop characteristic equation
is - Q(t1) KQ(t) JQ(t)
- We can also determine the next state for each
input/current state combination directly from the
characteristic table
15State Table Characteristic Table
- With these equations, we can make a table showing
J1, K1, J0 and K0 - for the different combinations of present state
Q1Q0 and input X - J1 X Q0 J0 X Q1
- K1 X Q0 K0 X
16State Table Characteristic Table
17State Table Characteristic Table
0
18A different look
Present State Q1 Q0 Present State Q1 Q0 Next State Next State Next State Next State Output Z Output Z
Present State Q1 Q0 Present State Q1 Q0 Input X 0 Input X 0 Input X 1 Input X 1 X 0 X 1
0 0 0 0 0 1 0 0
0 1 1 0 0 1 0 0
1 0 1 1 0 1 0 0
1 1 0 0 0 1 0 1
19State diagrams (Mealy model)
- We can also represent the state table graphically
with a state diagram - A diagram corresponding to our example state
table is shown below
20Sizes of state diagrams
- Always check the size of your state diagrams
- If there are n flip-flops, there should be 2n
nodes in the diagram - If there are m inputs, then each node will have
2m outgoing arrows - In our example,
- We have two flip-flops, and thus four states or
nodes. - There is one input, so each node has two outgoing
arrows.
21Another Mealy Circuit
22Excitation Equations
- D0 EN Q0 EN Q0
- D1 EN Q1 EN Q1 Q0 EN Q1 Q0
23Next State/Output Equations
- Q0(t1) D0 EN Q0 EN Q0
- Q1(t1) D1 EN Q1 EN Q1 Q0 EN Q1 Q0
- MAX EN Q1 Q0
24Mealy State Table
- Q0(t1) D0 EN Q0 EN Q0
- Q1(t1) D1 EN Q1 EN Q1 Q0 EN Q1 Q0
- MAX EN Q1 Q0
Present State Q1 Q0 Present State Q1 Q0 Next State Next State Next State Next State Output MAX Output MAX
Present State Q1 Q0 Present State Q1 Q0 Input EN 0 Input EN 0 Input EN 1 Input EN 1 X 0 X 1
0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1
25Mealy State Diagram
Present State Q1 Q0 Present State Q1 Q0 Next State Next State Next State Next State Output MAX Output MAX
Present State Q1 Q0 Present State Q1 Q0 Input EN 0 Input EN 0 Input EN 1 Input EN 1 X 0 X 1
0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1
26Moore Circuit
X
Remove input connection to output logic gt Moore
machine
27Next State/Output Equations
X
- Q0(t1) D0 EN Q0 EN Q0
- Q1(t1) D1 EN Q1 EN Q1 Q0 EN Q1 Q0
- MAX Q1 Q0
28Moore State Table
- Q0(t1) D0 EN Q0 EN Q0
- Q1(t1) D1 EN Q1 EN Q1 Q0 EN Q1 Q0
- MAX Q1 Q0
Present State Q1 Q0 Present State Q1 Q0 Next State Next State Next State Next State Output MAX
Present State Q1 Q0 Present State Q1 Q0 Input EN 0 Input EN 0 Input EN 1 Input EN 1 Output MAX
0 0 0 0 0 1 0
0 1 0 1 1 0 0
1 0 1 0 1 1 0
1 1 1 1 0 0 1
29Moore State Diagram
Present State Q1 Q0 Present State Q1 Q0 Next State Next State Next State Next State Output MAX Output MAX
Present State Q1 Q0 Present State Q1 Q0 Input EN 0 Input EN 0 Input EN 1 Input EN 1 X 0 X 1
0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1
30State Transitions
- MAX Output of the Mealy circuit
- MAXS Output of the Moore circuit
31Sequential circuit analysis summary
- To analyze sequential circuits, you have to
- Find Boolean expressions for the outputs of the
circuit and the - flip-flop inputs
- Use these expressions to fill in the output and
flip-flop input columns - in the state table
- Finally, use the characteristic equation or
characteristic table of the - flip-flop to fill in the next state columns.
- The result of sequential circuit analysis is a
state table or a state - diagram describing the circuit