Title: Introduction to Computer Graphics Introduction
1Introduction toComputer Graphics- Introduction
-
2Overview
- Today
- Administrative stuff
- Overview of computer graphics
- Fundamentals of image formation
- Next time
- Ray tracing fundamentals
3General Information
- Blockveranstaltung
- 31
- Tue, Wed, Th 11.30-13.00 h
- Room M160
- Assignments
- Weekly
- Th Tue next week
- practical assignments
- Program your own ray tracer
- Provisional web page
- http//www.mpi-inf.mpg.de/departments/irg3/ws0506/
cg/index.html - Lecture slides (PDF), assignments, other
information
4People
- Lecturer
- Prof. Marcus Magnor
- Room G29
- E-mail magnor_at_mpi-sb.mpg.de
- Assistant
- Andrei Lintu
- At MPII
- Tel. 0681/9325-527
- E-mail lintu_at_mpi-sb.mpg.de
- Secretary
- Dr. Marion Zeiz
- Room G28
- Tel. 391-2102
5Weekly Assignments
- Weekly assignments (Th to Tue)
- Programming assignments
- Submit your solution by following Tuesday
- E-mail program code to Andrei Lintu
- Feedback
- Correct program code provided on web page
- Discussion, QA via e-mail (chat ?)
6Programming Assignments
- On computers in student pool
- Standard ANSI C/C
- Must compile on any Linux system
- Send in compile-alone source code
- Standard libraries, library paths
- Provide Makefile
- Must compile and run on any Linux box
- Basis for ray tracing competition
7Ray Tracing Competition
- At the end of semester
- Technical part implement additional techniques
- Points for each implemented technique
- Bump mapping
- Shadow mapping
- Motion blur
-
- Artistic part create your own ray-traced work of
art - Picture must reflect all additionally implemented
techniques - Awards for best pictures
- Virtual exhibition on our web pages
8To pass the course
- Programming assignments
- Minimum of 30 per assignment sheet
- Average of gt50 of all assignments
- Ray Tracing competition
- Submit a picture created with your enhanced ray
tracer - Create accompanying web page explaining your
techniques etc. - Implement minimum number of technical points
9Literature
- Frank Nielsen, "Visual Computing", Charles River
Media, 2005, EUR 55,90 - Peter Shirley, "Realistic Ray-Tracing", AK
Peters, 2003, EUR 40,00 - Alan Watt, Mark Watt, "Advanced Animation and
Rendering Techniques, Addison-Wesley, 1992, EUR
55,50 - Peter Shirley et al., "Fundamentals of Computer
Graphics", AK Peters, 2005, EUR 81,50 - James Foley, Andries Van Dam, et al., "Computer
Graphics Principles and Practice", 2. Edition,
Addison-Wesley, 1995, EUR 81,50
10Course Syllabus
- Fundamentals
- light transport
- Ray Tracing
- Basics
- Transformations and projections
- Acceleration strategies
- Signal processing, antialiasing
- Advanced Topics
- Human visual system
- Perception
- Global illumination
11What is Computer Graphics ?
Engineering
Psychology
Photography
CAD/CAM/CAE
Rendering
Perception
Graphics
Simulation
Inverse Rendering
Geometric Modeling
Physics
Vision
Mathematics
12Image Perception - Image Formation
Scene Geometry Motion Surface Reflectance Scene
Illumination Camera
Models
Physics
Image
13Historical Perspective
- A short history of graphics
- 1950 MIT Whirlwind (CRT)
- 1955 Sage, Radar with CRT and light pen
- 1958 Willy Higinbotham Tennis
- 1960 MIT Spacewar on DEC PDP-1
- 1963 Ivan Sutherlands Sketchpad (CAD)
- 1969 ACM Siggraph founded
- 1968 Tektronix storage tube (5-10.000)
- 1968 EvansSutherland (flight simulators)
founded - 1968 Douglas Engelbart computer mouse
- 1970 Xerox GUI
- 1971 Gourand shading
- 1974 Z-buffer
- 1975 Phong model
- 1979 Eurographics founded
- 1980 Whitted Ray tracing
14Historical Perspective
- A short history of graphics (Cont.)
- 1981 Apollo Workstation, IBM PC
- 1982 Silicon Graphics (SGI) founded
- 1984 X Window System
- 1984 First Silicon Graphics Workstations (IRIS
GL) - Until mid/end of 1990s Dominance of SGI in the
high end - HW RealityEngine, InfiniteReality,
RealityMonster, ... - SW OpenGL, OpenInventor, Performer, Digital
Media Libs, ... - End of 1990sLow- to mid range taken over by
PCs (Nvidia, ATI, ...) - HW Fast development cycles, Graphics-on-a-chip,
... - SW Direct 3D OpenGL, computer games
- Today
- Programmable graphics hardware, Cg
15Visual Entertainment
(1) Quelle SPIO, Spitzenorganisation der
Filmwirtschaft, Wiesbaden (2) Quelle FFA,
Filmförderanstalt, Berlin (3) Quelle
Titelprüfung der USK für Computerspiele (aller
Systeme), entspricht rd. 95 aller auf dem dt.
Markt publizierten Produktionen (4) Quelle Gfk,
Gesellschaft für Konsumforschung zitiert nach
VUD, Verband Unterhaltssoftware Dtld. e.V.
16Siggraph Publications 2001-2005
17Computer Graphics Industry
- Graphics hardware
- NVidia (USA)
- ATI (Canada)
- Software research
- Microsoft (USA, UK, China)
- Animation software
- Alias (Canada)
- Avid/SoftImage (USA/Canada)
- Autodesk (USA)
- Interactive entertainment
- Electronic Arts (USA)
- HEADQUARTERS Redwood City, California
- REVENUES 3.1 billion for fiscal 2005
- EMPLOYEES 6,100 worldwide
- Sony, Nintendo, Sega (Japan)
- Ubi Soft (France)
- F/X
- Industrial Light Magic (USA)
- Digital Domain (USA)
- Pixar (USA)
18Industrial CG Jobs in Germany
- CAD, VR
- Airbus (Hamburg)
- Automotive industry
- Small- mid-cap companies
- Animation
- http//www.rendering.de/nano.cms/Lightwave/Jobange
bote - Game development
- Bundesverband der interaktiven Unterhaltungssoftwa
re - http//www.game-verband.de/
- Ubi Soft (Düsseldorf)
- Radon Labs, Zeroscale, SEK (Berlin)
- Crytek (Coburg)
- CG Research
- Mental Images, Mercury (Berlin)
- Alias, Scanline (Munich)
19Summary
- Computer Graphics
- Rendering, modeling, visualization, animation,
imaging, - Young, dynamic area
- Progress driven by research technology
- Big industry
- gtgt interactive entertainment, special effects
- Interdisciplinary field
- Mathematics, physics, engineering, psychology,
art, entertainment,
20Introduction toComputer Graphics- Image
Formation -
21Motivation
22Image Formation
Sensor
23Perception of Light
The eye detects radiance
24Radiance in Space
Flux leaving surface 1 must be equal to flux
arriving on surface 2
The radiance in the direction of a light ray
remains constant as it propagates along the ray
25Brightness Perception
r
f
l
- dA gt dA photon flux per rod stays constant
- dA lt dA photon flux per rod decreases
- Where does the Sun turn into a star ?
- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury,
Earth or Neptune - Photon flux per rod decreases when d? lt 1 arc
minute (beyond Neptune)
26Light Object Interaction
Light/Object interaction
27Reflectance
- Reflectance may vary with
- Illumination angle
- Viewing angle
- Wavelength
- (Polarization)
- Variations due to
- Absorption
- Surface micro-geometry
- Index of refraction / dielectric constant
- Scattering
Aluminium ?2.0µm
Aluminium ?0.5µm
Magnesium ?0.5µm
28Surface Radiance
- Visible surface radiance
- Surface position
- Outgoing direction
- Incoming illumination direction
- Self-emission
- Reflected light
- Incoming radiance from all directions
- Direction-dependent reflectance
29Bidirectional Reflectance Distribution Function
- BRDF describes surface reflection for light
incident from direction (??,f?) observed from
direction (?i,fi) - Bidirectional
- depends on two directions (4-D function)
- Distribution function
- Unit 1/sr
30BRDF Properties
- Helmholtz reciprocity principle
- BRDF remains unchanged if incident and reflected
directions are interchanged - Smooth surface isotropic BRDF
- reflectivity independent of rotation around
surface normal - BRDF has only 3 instead of 4 degrees of freedom
31BRDF Properties
- Characteristics
- BRDF units sr--1
- not intuitive
- Range of values
- from 0 (absorption) to
- ? (reflection, d -function)
- Energy conservation law
- No self-emission
- Possible absorption
- Reflection only at the point of entry (xi xo)
- No subsurface scattering
32BRDF Measurement
- Gonio-Reflectometer
- BRDF measurement
- point light source position (?,?)
- light detector position (?o ,?o)
- 4 degrees of freedom
- BRDF representation
- m incident direction samples (?,?)
- n outgoing direction samples (?o ,?o)
- mn reflectance values
Stanford light gantry
33Wrap-Up
- What you perceive is radiance
- Different objects reflect light differently
Bidirectional Reflectance Distribution Function
(BRDF) - Light can be absorbed, scattered, bent,