Title: Alternative Communication or Ignorance is Bliss
1Alternative CommunicationorIgnorance is Bliss
- K. Pister
- EECS, BSAC
- UC Berkeley
2Limits to RF Communication
- 8 GHz (3.5cm)
- 20 W
- 1.5x109 km
- 115 kbps
- -130dbm Rx
- 10-21 J/bit
- kT4x 10-21 J _at_300K
- 5000 3.5cm photons/bit
3Maxell (Hitachi) RF ID Chip
41kbps, 100m, ground
- Sensitivity kBT Df Nf SNRmin
- kBT 1kHz 10x
limit SNR - S -174dBm 30 dB 10 dB 10 dB
- -124 dBm
- Path loss 16p2 (d/l)4 /Gant (min1)
- 22dB 40dB log10300 Gant
- 122 dB Gant
- Transmit 1mW, receive 122dBm ? OK
- 1uJ/bit fundamental Tx cost.
51kbps, 100m, ideal
- Sensitivity kBT Df Nf SNRmin
- kBT 1kHz at
limit coding wizards - S -174dBm 30 dB 0 dB 0 dB
- -134 dBm
- Path loss 16p2 (d/l)2 /Gant (UAV)
- 22dB 20dB log10300 6 (dipole)
- 66 dB
- Transmit 1nW, receive 126dBm ? OK
- 1pJ/bit fundamental Tx cost.
61kbps, 100m, Bluetooth
- Sensitivity -75 dBm (standard)
- kBT 1MHz lousy
radios OK! - S -174dBm 60 dB 39 dB
-
- Path loss 10 dB/desk? /wall?
- Transmit 1mW for 1ms
- 1nJ/bit fundamental Tx cost.
- actual Tx, Rx power drain 100mW
- 100nJ/bit, 10s of meters?
7Hearing Aid Microphones
Knowles Electronics 3024
- Excellent sensitivity
- Low power consumption (20mA _at_ 1.3V)
- Simple electronic interface (on-board amplifier)
- Tiny (2.5mm)3
8Acoustic Communication
Knowles Electronics 3024
Power in an acoustic wave P P02 S / r
c where P0 is the air pressure S is the surface
area r is the fluid density and c is the speed of
sound
For a 10m sphere at 30dB SPL, P 1.5mW (loud
whisper) For a 1km sphere at 30dB SPL, P 15mW
(crickets) For a 100m sphere at 110dB SPL, P
4kW (Rolling Stones)
9Optical Communication w/ MEMS
- Passive communication
- Modulated corner cube reflectors
- RAND inspired (Bob Zwirn, R. Steeb, K. Brendley),
1990/92 - Active communication
- Steered lasers
- DARPA/ISAT 93 (M. Horowitz)
-
10Optical Communication
Path loss
0-25
25
Loss (Antenna Gain) Areceiver / (4p
d2) Antenna Gain 4p / q½2
11Output Power Efficiency
Pout
- RF
- Slope Efficiency
- Linear mod. 10
- GMSK 50
- Poverhead 1-100mW
- Optical
- Slope Efficiency
- lasers 25
- LEDs 80
- Poverhead 1uW-100mW
True Efficiency
Slope Efficiency
Pin
Poverhead
12Optical Comm Proof of Concept
- Receiver
- 1 lens, std. video CCD
- PCMCIA Frame grabber
- Software decoding
- Transmitter
- Std. Laser pointer
- 2 day life full duty
- 4bps, OOK
13Video Semaphore Decoding
14Steered Agile Laser Transceivers (SALT)
- Imaging receiver
- Multiple laser turrets
- 3 axis gyro-based feed-forward control
Co-PI Bernhard Boser
15SALT Goal
- 1-10 km
- 1-10 Mbps
- ltlt 1W
- 1 cm3
161-10 Mbps CMOS imaging receiver
17Optical Receiver Noise
- Thermal noise from amplifier
- Int2 4kTB/R
- Shot noise Ins2 2 q Id B
- Background light photocurrent
- Signal light photocurrent
- Diode leakage
- Bottom line
- Amplifier dominates for Npixel gt 10100
- 50uW /pixel gives 65dBm noise
182D beam scanning
196-bit DAC Driving Scanning Mirror
- Open loop control
- Insensitive to disturbance
- Potentially low power
208mm3 laser scanner
Two 4-bit mechanical DACs control mirror scan
angles. 6 degrees azimuth, 3 elevation
21Acquisition
- SALT/SALT (w/ imaging receiver)
- Single scan, hello byte
- Logarithmic acquisition w/variable divergence
- 1ms for short range (100m)
- Mote/mote (omni receivers)
- Two scans
- hello, Im Bob pointing at x,y
- Bob again, at x,y. Ive heard Jan who was
pointing at i,j and Kris who said - 1 s ?
22Maintenance
- SALT/SALT
- Feed-forward on beam steering
- 3 axis gyro (10-10kHz BW)
- Imaging receiver (DC-100kHz?)
- Dithering
- Whats loudest here? here? here?
- Mote/mote (omni receivers)
- Dithering only
- wmax q1/2duty/(tbNpacket)
- gtgt1 rad/sec for Mbps comm
23Theoretical Performance
5km
Ptotal 50mW Pt 5mW q½ 1mrad ? Gant
71dB BR 5 Mbps
Areceiver 1cm2 Pr 10nW (-50dBm) Ptotal
50uW /pixel SNR 15 dB 10,000 photons/bit
10nJ/bit
24Theoretical Performance
5m
Ptotal 100uW Pt 10uW q½ 1mrad BR 5 Mbps
Areceiver 0.1mm2 Pr 10nW (-50dBm) Ptotal
50uW SNR 15 dB
20pJ/bit!
25Theoretical Performance
500km
Ptotal 50mW Pt 5mW q½ 1mrad BR 2 Mbps
Areceiver 1m2 Pr 10nW (-50dBm) Ptotal 50uW
/pixel SNR 17 dB
25nJ/bit!
26Conclusion
- Grit your teeth and use the radio
- 50uJ/bit 1-10km
- 100nJ/bit 0-50m
- Unless youre lucky enough to have line of sight
- Use optical comm when possible
- 10nJ/bit 1-10km
- 20pJ/bit 0-50m
2701 Goal
28RF Sensitivity
- Pn kBT Df Nf
- Sensitivity Pn SNRmin
- e.g. GSM (European cell phone standard), 115kbps
- kBT 200kHz 8x SNR
- S -174dBm 53 dB 9 dB 10 dB
- -102 dBm
- RX power drain 200mW ? 2uJ/bit
- TX power drain 4W ? 40 uJ/bit
29RF Path Loss
- Isotropic radiator, l/4 dipole
- PrPt / (16p2 (d/l)n)
- Free space n2
- Ground level n27, average 4
30N4
From Mobile Cellular Telecommunications, W.C.Y.
Lee Pt 10-50W
31Path Loss
- Like to choose longer wavelength
- Loss (l/d)n
- 916MHz, 30m, ? 92dB power loss
- ? need 92dBm receiver for 1mW xmitter
- ? power!
- Penetration of structures, foliage,
- But
- Antenna efficiency
- Size l/4 _at_ 1GHz 7.5cm
32RF Sensor Future
- RF tags Sensors
- Ultra Wide Band
- 10ps? digital pulse trains
- LLNL
- 60 GHz
- Major path loss problems
- But oh, the bandwidth!
- MEMS RF components
- Mechanical filters already dominate RF
- Never ever bet against Pisano and Howe