MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions

Description:

Coterminal: Angles with the same terminal side. ... Draw a right triangle, specify the coterminal angle ( ), and use the fraction to ... – PowerPoint PPT presentation

Number of Views:132
Avg rating:3.0/5.0
Slides: 27
Provided by: wall170
Category:

less

Transcript and Presenter's Notes

Title: MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions


1
MTH 112Elementary Functions Chapter 5The
Trigonometric Functions
  • Section 3 Trigonometric Functions of Any Angle

2
Two Views of an Angle
  • Geometric
  • The union of two rays with a common endpoint.
  • Measurement is from 0? to 180? (limited range)

3
Two Views of an Angle
  • Geometric
  • A Rotation
  • Position a ray on the positive x-axis with the
    endpoint at the origin. This is the initial side
    of the angle.
  • Rotate a copy of this ray around the origin to
    produce the terminal side of the angle.
  • Measurement specifies the amount direction of
    rotation.

4
Signed Angle Measurement
(Rotational View of an Angle)
  • Positive Angles
  • Counterclockwise rotation.

5
Signed Angle Measurement
(Rotational View of an Angle)
  • Positive Angles
  • Negative Angles
  • Clockwise rotation.

6
Signed Angle Measurement
(Rotational View of an Angle)
  • Positive Angles
  • Negative Angles
  • Right Angles
  • 90?
  • -90?
  • 270?
  • -270?
  • 450?
  • etc.

7
Signed Angle Measurement
(Rotational View of an Angle)
  • Positive Angles
  • Negative Angles
  • Right Angles
  • Rays
  • 0?
  • 360?
  • -360?
  • etc.

8
Signed Angle Measurement
(Rotational View of an Angle)
  • Positive Angles
  • Negative Angles
  • Right Angles
  • Rays
  • Lines
  • 180?
  • -180?
  • 540?
  • etc.

9
Signed Angle Measurement
(Rotational View of an Angle)
  • How many measurements can a single angle
    represent?
  • ?
  • How are these measurements related?
  • n 360k?
  • 0? n lt 360?
  • k ? non-negative integers

Coterminal Angles with the same terminal side.
10
Trigonometric Functions of Acute Angles of
Rotation
  • sin ? y / r
  • cos ? x / r
  • tan ? y / x
  • sec ? r / x
  • csc ? r / y
  • cot ? x / y

r
x2 y2 r2
11
Trigonometric Functions of Any Angle
12
Trigonometric Functions of Any Angle First
Quadrant
  • sin ? y / r
  • cos ? x / r
  • tan ? y / x
  • sec ? r / x
  • csc ? r / y
  • cot ? x / y

x gt 0 y gt 0 ? All six functions are positive.
13
Trigonometric Functions of Any Angle Second
Quadrant
  • sin ? y / r
  • cos ? x / r
  • tan ? y / x
  • sec ? r / x
  • csc ? r / y
  • cot ? x / y

(x, y)
r
y
x
x2 y2 r2
x lt 0 y gt 0 ? cos ? is negative sin ? is
positive.
14
Trigonometric Functions of Any Angle Third
Quadrant
  • sin ? y / r
  • cos ? x / r
  • tan ? y / x
  • sec ? r / x
  • csc ? r / y
  • cot ? x / y

?
x
y
r
(x, y)
x2 y2 r2
x lt 0 y lt 0 ? cos ? sin ? negative.
15
Trigonometric Functions of Any Angle Fourth
Quadrant
  • sin ? y / r
  • cos ? x / r
  • tan ? y / x
  • sec ? r / x
  • csc ? r / y
  • cot ? x / y

?
x
y
r
(x, y)
x2 y2 r2
x gt 0 y lt 0 ? cos ? is positive sin ? is
negative.
16
Summary of the Signs of the Trig Functions by
Quadrant
sin gt 0 cos lt 0 tan lt 0
All positive
sin lt 0 cos lt 0 tan gt 0
sin lt 0 cos gt 0 tan lt 0
17
Reference Angle
(-x, y)
  • The first quadrant angle containing the point
  • ( x, y )
  • Where (x, y) is on the terminal side of the
    angle.

(x, y)
(x, y)
?
?
(-x, -y)
(x, -y)
?
?
(x, y)
(x, y)
18
Using Reference Angles to Find Trig Values of
Multiples of 30, 45, and 60 Angles.
The same idea can be applied to the other two
quadrants.
19
Given one trigonometric value of an angle and the
quadrant of the terminal side of the angle, find
the other five trigonometric values.
  • Write the given value as a fraction.
  • - What about negative signs?
  • Draw a right triangle, specify the coterminal
    angle (?), and use the fraction to determine the
    lengths of two sides relative to the indicated
    angle.
  • Determine the other five trigonometric values
    using the definitions.
  • Determine the signs of the other five
    trigonometric values using the indicated quadrant.

20
Given one trigonometric value of an angle and the
quadrant of the terminal side of the angle, find
the other five trigonometric values example!
Problem If sec ? -2.5 and ? is in the second
quadrant, find sin ?, cos ?, tan ?.
2.5 5/2
5
2
21
Trig Values of Angles with the Terminal Side on
an Axis
Case 1 Positive y-Axis 90 360k (k is any
non-negative integer)
sin 90 r / r 1 cos 90 0 / r 0 tan 90
r / 0 .. undefined !
22
Trig Values of Angles with the Terminal Side on
an Axis
Case 2 Negative x-Axis 180 360k (k is
any non-negative integer)
sin 180 0 / r 0 cos 180 -r / r -1 tan
180 0 / -r 0
23
Trig Values of Angles with the Terminal Side on
an Axis
Case 3 Negative y-Axis 270 360k (k is
any non-negative integer)
sin 270 -r / r -1 cos 270 0 / r 0 tan
270 -r / 0 .. undefined !
24
Trig Values of Angles with the Terminal Side on
an Axis
Case 4 Positive x-Axis 0 360k (k is any
non-negative integer)
sin 0 0 / r 0 cos 0 r / r 1 tan 0 0
/ r 0
25
Trig Values of Angles with the Terminal Side on
an Axis
26
Review of Known Acute Angles
Write a Comment
User Comments (0)
About PowerShow.com