Title: Trigonometric Functions: The Unit Circle Section 4.2
1Trigonometric Functions The Unit CircleSection
4.2
2Objectives
- I can list the 6 trig functions
- I can find the key values of any of the trig
functions on the Unit circle - I can identify the period of each trig function
- I can identify which trig functions are even or
odd
36 Trig Functions
- Cosine (cos)
- Sine (sin)
- Tangent (tan)
- Secant (sec)
- Cosecant (csc)
- Cotangent (cot)
- Which ones are related as reciprocals??
4S O H - C A H - T O A
Parent functions
Reciprocal functions
5Reciprocal Identities
6Quotient Identities
7We get cosine and sine values for angles from the
unit circle.We get the rest from SOH-CAH-TOA and
reciprocals
8Evaluating Trig Functions
Use your unit circle, find the angle,
evaluate. Rationalize the denominator as needed.
- 1 Find the six trig. values for 300?.
- sin 300o csc 300o
- cos 300o sec 300o
- tan 300o cot 300o
9Evaluating Trig Functions
Use your unit circle, find the angle,
evaluate. Rationalize the denominator as needed.
- 1 Find the six trig. values for -5p/4
- sin csc
- cos sec
- tan cot
10Even and Odd Trigonometric Functions
- The cosine and secant functions are EVEN.
- cos(-t) cos t sec(-t) sec t
- The sine, cosecant, tangent, and cotangent
functions are ODD. - sin(-t) -sin t csc(-t) -csc t
- tan(-t) -tan t cot(-t) -cot t
11Trig Properties
f(x) cos x
f(x) sin x
EVEN
ODD
12sin(-t) -sin t
13cos(-t) cos(t)
14Problems
-1/4
- If sin (t) ¼, find sin (-t).
- If sin (t) is 3/8, find csc (-t).
- 3) If cos (t) -3/4, find cos(-t).
If sin (t) is 3/8, then csc (t) 8/3. We want to
find csc (-t) which is the opposite of csc (t)
-8/3.
cos(t) cos(-t) so -3/4
15Definition of a Periodic Function
- A function f is periodic if there exists a
positive number p such that - f(t p) f(t)
- For all t in the domain of f. The smallest number
p for which f is periodic is called the period of
f.
16Function Period (Radians) Period (Degrees)
Cosine 2p 360
Sine 2p 360
Secant 2p 360
Cosecant 2p 360
Tangent p 180
Cotangent p 180
17Homework