Trigonometric Functions: The Unit Circle Section 4.2 - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Trigonometric Functions: The Unit Circle Section 4.2

Description:

Trigonometric Functions: The Unit Circle Section 4.2 Objectives I can list the 6 trig functions I can find the key values of any of the trig functions on the Unit ... – PowerPoint PPT presentation

Number of Views:537
Avg rating:3.0/5.0
Slides: 18
Provided by: jacci4
Category:

less

Transcript and Presenter's Notes

Title: Trigonometric Functions: The Unit Circle Section 4.2


1
Trigonometric Functions The Unit CircleSection
4.2
2
Objectives
  • I can list the 6 trig functions
  • I can find the key values of any of the trig
    functions on the Unit circle
  • I can identify the period of each trig function
  • I can identify which trig functions are even or
    odd

3
6 Trig Functions
  • Cosine (cos)
  • Sine (sin)
  • Tangent (tan)
  • Secant (sec)
  • Cosecant (csc)
  • Cotangent (cot)
  • Which ones are related as reciprocals??

4
S O H - C A H - T O A
Parent functions
Reciprocal functions
5
Reciprocal Identities
6
Quotient Identities
7
We get cosine and sine values for angles from the
unit circle.We get the rest from SOH-CAH-TOA and
reciprocals
8
Evaluating Trig Functions
Use your unit circle, find the angle,
evaluate. Rationalize the denominator as needed.
  • 1 Find the six trig. values for 300?.
  • sin 300o csc 300o
  • cos 300o sec 300o
  • tan 300o cot 300o

9
Evaluating Trig Functions
Use your unit circle, find the angle,
evaluate. Rationalize the denominator as needed.
  • 1 Find the six trig. values for -5p/4
  • sin csc
  • cos sec
  • tan cot

10
Even and Odd Trigonometric Functions
  • The cosine and secant functions are EVEN.
  • cos(-t) cos t sec(-t) sec t
  • The sine, cosecant, tangent, and cotangent
    functions are ODD.
  • sin(-t) -sin t csc(-t) -csc t
  • tan(-t) -tan t cot(-t) -cot t

11
Trig Properties
f(x) cos x
f(x) sin x
EVEN
ODD

12
sin(-t) -sin t
13
cos(-t) cos(t)
14
Problems
-1/4
  • If sin (t) ¼, find sin (-t).
  • If sin (t) is 3/8, find csc (-t).
  • 3) If cos (t) -3/4, find cos(-t).

If sin (t) is 3/8, then csc (t) 8/3. We want to
find csc (-t) which is the opposite of csc (t)
-8/3.
cos(t) cos(-t) so -3/4
15
Definition of a Periodic Function
  • A function f is periodic if there exists a
    positive number p such that
  • f(t p) f(t)
  • For all t in the domain of f. The smallest number
    p for which f is periodic is called the period of
    f.

16
Function Period (Radians) Period (Degrees)
Cosine 2p 360
Sine 2p 360
Secant 2p 360
Cosecant 2p 360
Tangent p 180
Cotangent p 180
17
Homework
  • WS 8-7
Write a Comment
User Comments (0)
About PowerShow.com