Title: Derivatives of Trigonometric Functions
1Lesson 3-4
- Derivatives of Trigonometric Functions
2Objectives
- Find the derivatives of trigonometric functions
3Vocabulary
4Trig Differentiation Rules
d ---- (sin x) cos x Sin dx d ---- ( cos x)
-sin x Cos dx Rest of them can be done from
these two and the Quotient rule!
5Rest of Trig Differentiation Rules
d ---- tan x sec² x dx d ---- (cot x)
-csc² x dx d ---- sec x (sec x) (tan
x) dx d ---- (csc x) -(csc x) (cot x) dx
6Example 1
Find the derivatives of the following
- y sin x cos x
- f(x) (tan x) / (x 1)
y(x) cos x (-sin x) cos x sin x
(x 1) (sec² x) (1) (tan x) y(x)
---------------------------------------
(x 1)²
7Example 2
Find the derivatives of the following
- y sin (p/4)
- y x³ sin x
y(x) 0
y(x) 3x² (sin x) x³ (cos x)
8Example 3
Find the derivatives of the following
- y x² 2x cos x
- y x / (sec x 1)
y(x) 2x 2x (-sin x) (2) (cos x)
(sec x 1) (1) (sec x tan x)
(x) y(x) --------------------------------------
-------- (sec x
1)²
9Example 4
Find the derivatives of the following
- y x / (cot x)
- y (csc x) / ex
(cot x) (1) (-csc² x) (x) y(x)
---------------------------------------
(cot x)²
(ex) (-csc x cot x) (ex) (csc
x) y(x) ---------------------------------------
------ (ex)²
10Example 5
Find the derivatives of the following
- sin x
- lim ----------- 7x
sin 5x - lim ----------- 5x
x?0
x?0
11Example 6
A particle moves along a line so that at any time
tgt0 its position is given by x(t) 2pt
cos(2pt). Find the velocity at time
t. Find the speed (v) at t ½. What
are the values of t for which the particle is at
rest?
v(t) x(t) 2p 2p (sin 2pt)
Speed v(1/2) x(t) 2p 2p (sin p)
2p
When v(t) 0 2p 2p (sin 2pt) 2p (sin 2pt)
2p ? sin 2pt 1
? t ¼, 5/4, 9/4, 13/4,
etc
12Summary Homework
- Summary
- Use trig rules for finding derivatives
- d(sin x) cos x
- d(cos x) -sin x
- Homework
- pg 216 217 1-3, 6, 9-11, 18, 29, 41