Multiscale Modelling of Nanostructures on Surfaces - PowerPoint PPT Presentation

About This Presentation
Title:

Multiscale Modelling of Nanostructures on Surfaces

Description:

Title: Condensed Matter Theory Group Author: Dimitri Vvedensky Last modified by: Dimitri Vvedensky Created Date: 8/24/2003 9:53:55 AM Document presentation format – PowerPoint PPT presentation

Number of Views:69
Avg rating:3.0/5.0
Slides: 25
Provided by: Dimit67
Category:

less

Transcript and Presenter's Notes

Title: Multiscale Modelling of Nanostructures on Surfaces


1
Multiscale Modelling ofNanostructures on Surfaces
  • Dimitri D. Vvedensky and Christoph A.
    Haselwandter
  • Imperial College London

2
Outline
  • Multiscale Modelling Quantum Dots
  • Lattice Models of Epitaxial Growth
  • Exact Langevin Equations on a Lattice
  • Continuum Equations of Motion
  • Renormalization Group Analysis
  • Heteroepitaxial Systems

3
Synthesis of Semiconductor Nanostructures
4
Structure of Quantum Dots
Georgsson et al. Appl. Phys. Lett. 67,
29812983 (1995)
K. Jacobi, Prog. Surf. Sci. 71,
185215 (2003)
5
Stacks of Quantum Dots
Goldman, J. Phys. D 37, R163R178 (2004)
6
Theories of Quantum Dot Formation
  • Quantum mechanics
  • Accurate, but computationally expensive
  • Molecular dynamics
  • Requires accurate potentials, long simulation
    times
  • Statistical mechanics and kinetic theory
  • Fast, easy to implement, but need parameters
  • Partial differential equations
  • Large length and long time scales relation to
    atomic processes?

7
Size Matters
8
Review Vvedensky, J. Phys Condens. Matter 16,
R1537 (2004)
9
Basic Atoms-to-Continuum Method
10
EdwardsWilkinson Model
Edwards and Wilkinson, Proc. Roy. Soc. London
Ser. A 381, 17 (1982)
11
The Wolf-Villain Model
Clarke and Vvedensky, Phys. Rev. B 37, 6559 (1988)
Wolf and Villain, Europhys. Lett. 13, 389 (1990)
12
Coarse-Graining Road Map
renormalization group
Macroscopic equation
Continuum equations
(crossover, scaling, self-organization)
Haselwandter and DDV (2005)
KMC simulations
Lattice Langevin equation
exact
Chua et al. Phys Rev. E (2005)
equivalent analytic
Master Chapman Kolmogorov equations
Lattice rules for growth model
formulation
13
Coarse-Graining Road Map
14
Renormalization Group Equations
15
WolfVillain Model in 1D
16
WolfVillain Model in 2D
(f)
(i)
17
Analysis of Linear Equation
18
Low-Temperature Growth of Ge(001)
Bratland et al., Phys. Rev. B 67, 125322 (2003)
  • T 95170 ºC
  • F 0.1 ML/s
  • DGe 0.6 eV
  • tGe hours!

19
Model for Quantum Dot Formation
Rb gt Ra Rc gt Ra Rd lt Ra
Ratsch, et al., J. Phys. I (France) 6, 575 (1996)
20
KMC Simulations of Quantum Dots
  • KMC simulations with
  • Random deposition
  • Nearest-neighbor hopping
  • Detachment barriers calculated
  • from Frenkel-Kontorova
  • model

Ratsch, et al., J. Phys. I (France) 6, 575 (1996)
21
Basic Lattice Model for Quantum Dots
  • Random deposition
  • Nearest-neighbor hopping
  • Total barrier to hopping ED ES nEN
  • ES from substrate, EN from each nearest
    neighbor, n 0, 1, 2, 3, or 4
  • Detachment barrier a function of height only EN
    EN(h)

22
PDE for Quantum Dots
23
Numerical Morphology
24
Summary, Conclusions, Future Work
  • Systematic lattice-to-continuum concurrent
    multiscale method
  • Ge(001) mechanism responsible for smooth growth
    early during growth leads to instability at later
    times
  • Application to simple model of quantum dot
    formation
  • Applications to other models (Poster Christoph
    Haselwandter)
  • Submonolayer growth
  • Systematic treatment of heteroepitaxy
  • More realistic lattice models?
Write a Comment
User Comments (0)
About PowerShow.com