Approximate methods for large molecular systems - PowerPoint PPT Presentation

About This Presentation
Title:

Approximate methods for large molecular systems

Description:

Approximate methods for large molecular systems Marcus Elstner Physical and Theoretical Chemistry, Technical University of Braunschweig Motivation Computational ... – PowerPoint PPT presentation

Number of Views:141
Avg rating:3.0/5.0
Slides: 28
Provided by: Secretary
Learn more at: http://mcc.illinois.edu
Category:

less

Transcript and Presenter's Notes

Title: Approximate methods for large molecular systems


1
Approximate methods for large molecular systems

Marcus Elstner Physical and Theoretical
Chemistry, Technical University of Braunschweig
2
Motivation
Structure-formation, atomic-scale related
properties and processes
Si1600
MoS2
a-SiCN-ceramics
Si21
C60-trimer
defects, doping
GaN-devices
4H-SiC-surfaces
3
Reactions in biological Systems
Alcohol DeHydrogenase
Aquaporin
Photosynthetic Reaction Center
Catalysis Proton Transfer Photochemistry Electron/
Energy Transfer
bR
Need QM description
Photochemistry
4
Computational challange
  • 1.000-10.000 atoms
  • ns molecular dynamics simulation
  • (MD, umbrella sampling)
  • weak bonding forces
  • chemical reactions
  • treatment of excited states

5
multiscale business
fs ps
ns time
CI, MP CASPT2
Length scale
nm
predictivity
6
Size problem
number of structures MD, MC, GA
time scale of process MD, MC -- RP, TST
ab initio, SE MM

size of system number of atoms
7
Size problem QM-Methods
Hybride methods QM/MM, QM/QM

Linear scaling O(N)
SE/approx. Methods
8
Semi-empirical /approximate methods
  • approximation, neglect and parametrization of
    interaction integrals from ab-initio and DFT
    methods
  • HF-based
  • CNDO, INDO, MNDO, AM1, PM3, MNDO/d,
    OM1,OM2
  • DFT-based
  • SCC-DFTB, DFT- 3center- tight
    binding (Sankey)
  • Fireballs --- gt Siesta DFT
    code
  • 1000
    atoms, 100 ps MD


9
Approximate density-functional theorySCC-DFTB
Self consistent - charge density functional
tight-binding
  • Seifert (1980-86) Int. J. Quant Chem., 58, 185
    (1996).
  • O-LCAO 2-center approximation approximate DFT
  • http//theory.chm.tu-dresden.de
  • Frauenheim et al. (1995) Phys. Rev. B 51, 12947
    (1995).
  • efficient parametrization scheme DFTB
  • www.bccms.uni-bremen.de
  • Elstner et al. (1998) Phys. Rev. B 58, 7260
    (1998).
  • charge self-consistency SCC-DFTB
  • www.tu-bs.de/pci

approximate DFT
10
Extensions and Combinations
TD-DFTB-LR
O(N)-QM/MM divideconquer H. Liu W. Yang Duke
Univ
QM/MM AMBER Han, Suhai DKFZ CHARMM
Cui, Karplus Harvard TINKER Liu, Yang Duke
CEDAR Hu, Hermans NC Univ
SCC-DFTB
Solvent Cosmo W. Yang GB H. Liu
DISPERSION P. Hobza, Prague
Electron Transport A. Di Carlo
TD-DFTB R. Allen Texas AM
11
SCC-DFTB
  • available for H C N O S P Zn
  • (Si, ...)
  • all parameters calculated from DFT
  • computational efficiency as NDO-type methods
  • (solution of gen. eigenvalue problem for valence
    electrons in minimal basis)


12
SCC-DFTB Tests
  • 1) Small molecules covalent bond
  • reaction energies for organic molecules
  • geometries of large set of molecules
  • vibrational frequencies,
  • 2) non-covalent interactions
  • H bonding
  • VdW
  • 3) Large molecules (this makes a difference!)
  • Peptides
  • DNA bases


13
SCC-DFTB Tests
  • 4) Transition metal complexes
  • 5) Properties
  • IR, Raman, NMR
  • excited states with TD-DFT
  • Transport calculations


14
SCC-DFTB Reviews
  • Application to biological molecules
  • M. Elstner, et al. ,A self-consistent carge
    density-functional based tight-binding scheme for
    large biomolecules, phys. stat. sol. (b) 217
    (2000) 357.
  • Elstner, et al. An approximate DFT method for
    QM/MM simulations of biological structures and
    processes. J. Mol. Struc. (THEOCHEM), 632 (2003)
    29.
  • M. Elstner, The SCC-DFTB method and its
    application to biological systems, Theoretical
    Chemistry Accounts, in print 2006.
  • 2) Focus on solids and nanostructures
  • T. Frauenheim, et al., Atomistic Simulations of
    complex materials ground and excited state
    properties, J. Phys. Condens. Matter 14 (2002)
    3015.
  • Th. Frauenheim et al. A self-consistent carge
    density-functional based tight-binding method for
    predictive materials simulations in physics,
    chemistry and biology, phys. stat. sol. (b) 217
    (2000) 41.
  • G. Seifert, in Encyclopedia of Computational
    Chemistry (WileySons 2004)


15
SCC-DFTB Tests 1 Elstner et al., PRB 58 (1998)
7260
  • Performance for small organic molecules
  • (mean absolut deviations)
  • Reaction energiesa) 5 kcal/mole
  • Bond-lenghtsa) 0.014 A
  • Bond anglesb) 2
  • Vib. Frequenciesc) 6-7
  • a) J. Andzelm and E. Wimmer, J. Chem. Phys. 96,
    1280 1992.
  • b) J. S. Dewar, E. Zoebisch, E. F. Healy, and J.
    J. P. Stewart, J. Am.
  • Chem. Soc. 107, 3902 1985.
  • c) J. A. Pople, et al., Int. J. Quantum Chem.,
    Quantum Chem. Symp. 15, 269
  • 1981.


16
SCC-DFTB Tests 2 T. Krueger, et al., J.Chem.
Phys. 122 (2005) 114110.
With respect to G2 mean ave. dev. 4.3
kcal/mole mean dev. 1.5 kcal/mole

17
SCC-DFTB Tests
Accuracy for vib. freq., problematic case e.g.

Special fit for vib. Frequencies Mean av. Err.
59 cm-1 ? 33 cm-1 for CH Malolepsza, Witek
Morokuma CPL 412 (2005) 237. Witek Morokuma, J
Comp Chem. 25 (2004) 1858.
18
H-bonded systems water
CCSD(T) 5.0 kcal/mole (Klopper et al PCCP 2000
2, 2227) BLYP 4.2 kcal/mole PBE
5.1 kcal/mole B3LYP 4.6 kcal/mole HF
3.7 kcal/mole (from XuGoddard,
JCPA 2004) For larger systems DFTB 3.3
kcal/mole HF 5.7 kcal/mole _at_
6-31G B3LYP 6.8 kcal/mole _at_ 6-31G 2
kcal/mole BSSE (BSIE)

19
H-bonds Han et al. Int. J. Quant. Chem.,78
(2000) 459. Elstner et al. phys. stat. sol. (b)
217 (2000) 357. Elstner et al. J. Chem. Phys.
114 (2001) 5149. Yang et al., to be published.
Coulomb interaction
  • 1-2kcal/mole too weak
  • relative energies reasonable
  • structures well reproduced

Model peptides N-Acetyl-(L-Ala)n N-Methylamide
(AAMA) 4 H2O
20
Secondary-structure elements for Glycine und
Alanine-based polypeptidesElstner, et al.. Chem.
Phys. 256 (2000) 15
aR-helix
N 1 (6 stable conformers)
310 - helix
stabilization by internal H-bonds
between i and i4
between i and i3
  • main problem for DFT(B) dispersion!
  • AM1, PM3, MNDO quite bad
  • OM2 much improved (JCC 22 (2001) 509)
  • DFTB very good for
  • relative energies
  • geometries
  • vib. freq. o.k.!

21
Glycine and Alanine based polypeptides in vacuo
Elstner et al., Chem. Phys. 256 (2000) 15
Elstner et al. Chem. Phys. 263 (2001) 203 Bohr
et al., Chem. Phys. 246 (1999) 13
Relative energies, structures and vibrational
properties N1-8
N 1 (6 stable conformers)
E relative energies (kcal/mole)
B3LYP
(6-31G)
MP2
MP4-BSSE
SCC-DFTB
Ace-Ala-Nme
C7eq C5ext C7ax

MP4-BSSE Beachy et al, BSSE corrected at MP2
level
22
Strength of SCC-DFTB
Structure of large molecules - dynamics -
relative energies

DNA A. V. Shiskin, et al., Int. J. Mol. Sci. 4
(2003) 537. O. V. Shishkin, et al., J. Mol.
Struc. (THEOCHEM) 625 (2003) 295.
23
Problems
  • same Problems as DFT
  • additional Problems
  • - except for geometries, in general lower
    accuracy than DFT
  • - slight overbinding (probably too low
    reaction barriers?!)
  • - too weak Pauli repulsion
  • - H-bonding (will be improved)
  • - hypervalent species, e.g. HPO4 or sulfur
    compounds
  • - transition metals probably good
    geometries, ... ?
  • - molecular polarizability (minimal basis
    method!)


24
SCC-DFTB vs. NDDO (MNDO, AM1, PM3)
  • DFTB
  • energetics of ONCH ok, S, P problematic
  • very good for structures of larger Molecules
  • vibrational frequencies mostly sufficient (less
    accurate than DFT)
  • NDDO
  • very good for energetics of ONCH (and others,
    even better than DFT)
  • structures of larger Molecules often problematic
    !!!
  • do NOT suffer from DFT problems? e.g. excited
    states
  • ? Mix of DFTB and NDDO to combine strengths of
    both worlds


25
DFT Problems
  • Ex Self interaction error. J- Ex 0 !
    Band gaps, barriers
  • Ex wrong asymptotic form - HOMO ltlt Ip
    virtual KS orbitals
  • Ex somehow too local overpolarizability, CT
    excitations
  • Ec too local Dispersion forces missing
  • Ec even much more too local isomerization
    reactions
  • Multi-reference problem
  • (1) (3) of course related, cure exact exchange!


26
DFT Problems (very) selective publications
  • Ex PRB 23 (1981) 5048, JCP 109 (1998) 2604
  • Ex JCP 113 (2000) 8918, Mol. Phys. 97 (1999)
    859.
  • Ex JPCA 104 (2000) 4755, JCP 119 (2003) 2943.
  • Ec JCP 114 (2001) 5149
  • Ec Angew. Chem. Int. Ed. 2006, 45, 4460 4464
  • Koch, Wolfram / Holthausen, Max C.A Chemist's
    Guide to Density Functional Theory, Wiley


27
Problems of DFT-GGA
  • - overbinding of small molecules CO... ? B3LYP,
    rev-PBE 10 kcal
  • transition metals B3LYP, PB86 ..., spin states,
    energetics 10-20 kcal
  • - vib. Freqencies
  • conjugate systems GGAs overpolarize? PAs of
    respective proton donors 10 kcal
  • - H-bonds ok with DFT, HF (cancellation of
    errors), water structure?
  • proton transfer (PT) barriers GGAlt B3LYP lt MP2lt
    CCSD 2-4 kcal with B3LYP!
  • Solution1 dont worry or dont care ? different
    functionals VERY different accuracy
  • Solution2 use something else
  • VdW- problem (dispersion) complete
    failure
  • Solution empirical dispersion for GGAs
  • excited states within TD-DFT ionic, CT states,
    double excitations, Rydberg states
  • Solution exact exchange or CI-based methods

Write a Comment
User Comments (0)
About PowerShow.com