Title: Multiscale Modelling of Nanostructures on Surfaces
1Multiscale Modelling ofNanostructures on Surfaces
- Dimitri D. Vvedensky and Christoph A.
Haselwandter - Imperial College London
2Outline
- Multiscale Modelling Quantum Dots
- Lattice Models of Epitaxial Growth
- Exact Langevin Equations on a Lattice
- Continuum Equations of Motion
- Renormalization Group Analysis
- Heteroepitaxial Systems
3Synthesis of Semiconductor Nanostructures
4Structure of Quantum Dots
Georgsson et al. Appl. Phys. Lett. 67,
29812983 (1995)
K. Jacobi, Prog. Surf. Sci. 71,
185215 (2003)
5Stacks of Quantum Dots
Goldman, J. Phys. D 37, R163R178 (2004)
6Theories of Quantum Dot Formation
- Quantum mechanics
- Accurate, but computationally expensive
- Molecular dynamics
- Requires accurate potentials, long simulation
times - Statistical mechanics and kinetic theory
- Fast, easy to implement, but need parameters
- Partial differential equations
- Large length and long time scales relation to
atomic processes?
7Size Matters
8Review Vvedensky, J. Phys Condens. Matter 16,
R1537 (2004)
9Basic Atoms-to-Continuum Method
10EdwardsWilkinson Model
Edwards and Wilkinson, Proc. Roy. Soc. London
Ser. A 381, 17 (1982)
11The Wolf-Villain Model
Clarke and Vvedensky, Phys. Rev. B 37, 6559 (1988)
Wolf and Villain, Europhys. Lett. 13, 389 (1990)
12Coarse-Graining Road Map
renormalization group
Macroscopic equation
Continuum equations
(crossover, scaling, self-organization)
Haselwandter and DDV (2005)
KMC simulations
Lattice Langevin equation
exact
Chua et al. Phys Rev. E (2005)
equivalent analytic
Master Chapman Kolmogorov equations
Lattice rules for growth model
formulation
13Coarse-Graining Road Map
14Renormalization Group Equations
15WolfVillain Model in 1D
16WolfVillain Model in 2D
(f)
(i)
17Analysis of Linear Equation
18Low-Temperature Growth of Ge(001)
Bratland et al., Phys. Rev. B 67, 125322 (2003)
- T 95170 ÂșC
- F 0.1 ML/s
- DGe 0.6 eV
- tGe hours!
19Model for Quantum Dot Formation
Rb gt Ra Rc gt Ra Rd lt Ra
Ratsch, et al., J. Phys. I (France) 6, 575 (1996)
20KMC Simulations of Quantum Dots
- KMC simulations with
- Random deposition
- Nearest-neighbor hopping
- Detachment barriers calculated
- from Frenkel-Kontorova
- model
Ratsch, et al., J. Phys. I (France) 6, 575 (1996)
21Basic Lattice Model for Quantum Dots
- Random deposition
- Nearest-neighbor hopping
- Total barrier to hopping ED ES nEN
- ES from substrate, EN from each nearest
neighbor, n 0, 1, 2, 3, or 4 - Detachment barrier a function of height only EN
EN(h)
22PDE for Quantum Dots
23Numerical Morphology
24Summary, Conclusions, Future Work
- Systematic lattice-to-continuum concurrent
multiscale method - Ge(001) mechanism responsible for smooth growth
early during growth leads to instability at later
times - Application to simple model of quantum dot
formation - Applications to other models (Poster Christoph
Haselwandter) - Submonolayer growth
- Systematic treatment of heteroepitaxy
- More realistic lattice models?