Title: DISTRIBUSI FREKUENSI
1DISTRIBUSI FREKUENSI
By. Raharjo http//raharjo.wordpress.com
2Pokok Bahasan
- Pengertian Distribusi Frekuensi
- Tabel Distribusi Frekuensi
- Pengertian
- Macam Tabel Distribusi Frekuensi
- Langkah Membuat Tabel Distribusi Frekuensi
- Tabel Distribusi Frekuensi Data Tunggal
- Tabel Distribusi Frekuensi Data Kelompok
- Grafik sebagai Alat Penggambaran Distribusi
Frekuensi - Distribusi Frekuensi Dalam Bentuk Grafik Poligon
- Distribusi Frekuensi Dalam Bentuk Grafik
Histogram
3Pengertian Distribusi Frekuensi
Distribusi (distribution) berarti penyaluran,
pembagian, atau pencaran.Frekuensi (frequency)
berarti kekerapan, keseringan, atau jarang
kerapnya. Dalam Statistik, frekuensi berarti
angka (bilangan) yang menunjukkan seberapa kali
suatu variabel (yang dilambangkan dengan
angka-angka itu) berulang dalam deretan angka
tersebut. Atau berapakalikah suatu variabel
muncul dalam deretan angka tersebut.Variabel
(variable) berarti ubahan, faktor tak tetap atau
gejala yang dapat diubah-ubah.Distribusi
Frekuensi diartikan sebagai penyaluran frekuensi,
pembagian frekuensi atau pencaran frekuensi.
Dalam statistik diartikan suatu keadaan yang
menggambarkan bagaimana frekuensi dari gejala
atau variabel yang dilambangkan dengan angka itu,
telah tersalur, terbagi atau terpencar.
4Pengertian Tabel Distribusi Frekuensi
- Tabel, yaitu alat penyajian data statistik yang
berbentuk (dituangkan dalam bentuk) kolom dan
lajur - Tabel Distribusi Frekuensi, yaitu alat penyajian
data statistik yang berbentuk kolom dan lajur,
yang didalamnya dimuat angka yang dapat
melukiskan atau menggambarkan pencaran atau
pembagian frekuensi dari variabel yang sedang
menjadi objek penelitian
Nilai Frekuensi
100 90 87 85 80 70 65 60 30 1 3 5 8 10 4 2 3 4
Total 40
5Macam Tabel Distribusi Frekuensi
- Tabel Distribusi Frekuensi Data Tunggal
- Yaitu salah satu jenis tabel statistik yang
didalamnya disajikan frekuensi dari data angka
angka yang ada itu tidak dikelompok-kelompokkan
(ungrouped data). - Contoh Tabel 2. Distribusi Frekuensi Nilai Mata
Kuliah - Pengantar Statistik dari 30 Mahasiswa
Nilai (X) Frekuensi (f)
90 87 85 80 70 3 5 8 10 4
Total 30
6- Tabel Distribusi Frekuensi Data Kelompokkan
- Yaitu salah satu jenis tabel statistik yang
didalamnya disajikan frekuensi dari data angka
dimana angka-angka tersebut dikelompok-kelompokkan
(dalam tiap unit terdapat sekelompok angka). - Contoh Tabel Distribusi Frekuensi Berat Badan
Peserta Mata Kuliah - Pengantar Statistik dari 30 Mahasiswa
Berat Badan Frekuensi (f)
50 - 54 45 - 49 40 - 44 35 - 39 30 - 34 25 - 29 3 5 8 9 4 1
Total 30
7- Tabel Distribusi Frekuensi Kumulatif
- Yaitu salah satu jenis tabel statistik yang
didalamnya disajikan frekuensi yang dihitung
terus meningkat atau selalu ditambah-tambahkan,
baik dari bwah ke atas maupun dari atas ke bawah.
- Contoh Tabel Distribusi Frekuensi Nilai Mata
Kuliah - Pengantar Statistik dari 30 Mahasiswa
Nilai f fk (b) fk (a)
9 8 7 5 2 5 6 13 4 2 30 25 19 6 2 5 11 24 28 30
Total 30
8- Tabel Distribusi Frekuensi Relatif (tabel
persentase) - Dikatakan frekuensi relatif karena frekuensi
yang disajikan bukanlah frekuensi yang
sebenarnya, melainkan frekuensi yang dituangkan
dalam bentuk angka persenan. - Contoh Tabel Distribusi Frekuensi Relatif Nilai
Mata Kuliah - Pengantar Statistik dari 30 Mahasiswa
- Rumus
- f
- P x 100
- N
- f frekuensi yg sdg dicari
- N jml frekuensi/bnyk individu
- p angka persentase
Nilai (X) f Persentase (p)
8 7 6 5 6 9 19 6 15,0 22,5 47,5 15,0
Total 40N 100,0
9- Tabel Distribusi Persentase Komulatif
- Contoh
- Tabel Persentase Komulatif (Tabel Distribusi
Frekuensi Relatif Komulatif) Nilai Mata Kuliah
Statistik dari 40 Mahasiswa
Nila (x) f p Pk (b) Pk (a)
8 7 6 5 6 9 19 6 15,0 22,5 47,5 15,0 100,0 85,0 62,5 15,0 15,0 37,5 85,0 100,0
Total 40N 100,0
10Langkah Membuat Tabel Distribusi Frekuensi
- Tabel Distribusi Frekuensi Data Tunggal
- Cari Nilai Tertinggi (skor paling tinggi/highest
score) dan nilai terendah (skor paling
rendah/lowest score). - Menghitung frekuensi masing-masing nilai yang ada
dengan bantuan jari-jari (tallies). - Mengubah jari-jari atau tallies menjadi angka
biasa - Catatan
- Untuk melambangkan variabel pada umumnya
dipergunakan lambang huruf X, Y, Z - N adalah singkatan dari number of cases, yang
menggantikan lambang ?f (jumlah frekuensi)
11- Tabel Distribusi Frekuensi Data Kelompokkan
- Cari Nilai Tertinggi (skor paling tinggi/highest
score) dan nilai terendah (skor paling
rendah/lowest score). - Tentukan Nilai Rentang. Menetapkan luas
penyebaran nilai yang ada, atau mencari banyaknya
nilai dari nilai terendah sampai dengan nilai
tertinggi, biasa disebut Total Range atau Range
dengan lambang R - Rumus R Nilai Tertinggi-Nilai Terendah
- Tentukan Banyak Kelas yang digunakan. Biasanya
paling sedikit 5 dan paling banyak 15. Dengan
rumus Sturges yaitu k 1 (3,3) (log n).(k
banyak kelas interval, n banyak data yang
digunakan) - Tentukan Panjang Kelas.
- Rentang p Panjang Kelas
- p k Banyak Kelas
- k
- Tentukan nilai ujung bawah kelas interval pertama
- diambil dari nilai data yang terkecil
- Boleh diambil dari nilai data yang lebih kecil
dari nilai data yang terkecil, dengan syarat
nilai data terbesar tercakup dalam interval nilai
data pada kelas interval terakhir. - Masukkan Semua data ke dalam interval kelas
12Contoh
- Berikut Nilai Mata Kuliah Statistika FIS UNJ
- 68 72 67 90 72 91 67 73 71 70
- 85 87 68 86 83 90 74 89 75 61
- 65 76 71 65 91 79 75 69 66 85
- 95 74 73 68 89 92 70 71 88 68
- Susunlah data di atas ke dalam tabel distribusi
frekuensi data kelompok Grafik Histogram!
13Penyelesaian
- Rentang 95 61 34
- Banyak Kelas 1 (3,3) (log 40)
- 1 (3,3) (1,6021)
- 6,28693
- Jadi Banyak kelas yang digunakan bisa 6 buah
atau 7 buah. - Panjang Kelas (p)
- 34
- p 4,86. Dibulatkan menjadi 5.
- 7
- Ujung bawah kelas interval pertamanya diambil 61.
14TabelNilai Mata Kuliah Pengantar Statistika
Pendidikan Mhs ISP FIS UNJ
Hasil Banyak Mhs
61 65 66 70 71 75 76 80 81 85 86 90 91 95 4 9 11 2 4 7 3
Jumlah 40
15GRAFIK SEBAGAI ALAT PENGGAMBARAN DISTRIBUSI
FREKUENSI
- Grafik adalah alat penyajian data statistik yang
tertuang dalam bentuk lukisan, baik berupa garis,
gambar maupun lambang. - Macam-macam Grafik
- Grafik Balok atau Batang atau Barchart
- Grafik Lingkaran atau diagram pastel atau
cyrclegram - Grafik Gambar atau Pictogram atau piotagraph
- Grafik Peta atau Kartogram
- Grafik Garis, antara lain grafik poligon, atau
polygon frequency - Grafik Ruang atau Grafik Histogram
- Dll.
16Langkah Melukiskan Distribusi Frekuensi Dalam
Bentuk Grafik Poligon (Poligon Frequency)
- Distribusi Frekuensi Dalam Bentuk Grafik Poligon
Data Tunggal - Membuat sumbu horisontal (abscis), lambang X
- Membuat sumbu vertikal (ordinal), lambang Y
- Menentukan titik nol (perpotongan X dan Y)
- Menempatkan nilai sesuai dengan data yang ada
pada sumbu X - Menempatkan frekuensi pada ordinal atau sumbu Y
- Melukiskan grafik poligonnya
17Langkah Melukiskan Distribusi Frekuensi Dalam
Bentuk Grafik Poligon (Poligon Frequency)
- Distribusi Frekuensi Dalam Bentuk Grafik Poligon
Data Kelompok - Membuat sumbu horisontal (abscis), lambang X
- Membuat sumbu vertikal (ordinal), lambang Y
- Menentukan titik nol (perpotongan X dan Y)
- Mencari dan Menempatkan nilai tengah
(mindpoint) masing-masing interval pada sumbu
X - Membuat garis pertolongan (koordinat)
- Menempatkan frekuensi pada ordinal atau sumbu Y
- Melukiskan grafik poligonnya
18Langkah Melukiskan Distribusi Frekuensi Dalam
Bentuk Grafik Histogram
- Distribusi Frekuensi Dalam Bentuk Grafik
Histogram Data Tunggal - Membuat sumbu horisontal (abscis), lambang X
- Membuat sumbu vertikal (ordinal), lambang Y
- Menentukan titik nol (perpotongan X dan Y)
- Menghitung Nilai Nyata (true value) tiap-tiap
interval dan menempatkan nilai sesuai dengan data
yang ada pada sumbu X - Menempatkan frekuensi pada ordinal atau sumbu Y
- Membuat garis pertolongan (koordinat)
- Melukiskan grafik histogramnya
19Langkah Melukiskan Distribusi Frekuensi Dalam
Bentuk Grafik Histogram
- Distribusi Frekuensi Dalam Bentuk Grafik
Histogram Data Kelompok - Membuat sumbu horisontal (abscis), lambang X
- Membuat sumbu vertikal (ordinal), lambang Y
- Menentukan titik nol (perpotongan X dan Y)
- Mencari dan Menempatkan Nilai Nyata dari
masing-masing interval pada sumbu X - Menempatkan frekuensi pada ordinal atau sumbu Y
- Membuat garis pertolongan (koordinat)
- Melukiskan grafik histogramnya
20 21ANDRIE WONGSO Wisdom, Motivation
Inspiration Mempersembahkan
Berani Mencoba
22Jangan takut gagal sebelum mencoba. Jangan takut
jatuh sebelum melangkah.
23Buang semua keraguan dan kebimbangan.
24Kesuksesan selalu milik kita yang berani
mencoba. Di kehidupan ini, apa-apa yang tidak
mungkin hanya seringkali belum pernah dicoba.