Title: Cluster Models P. Descouvemont Physique Nucl
1Cluster ModelsP. DescouvemontPhysique
Nucléaire Théorique et Physique Mathématique,
CP229,Université Libre de Bruxelles, B1050
Bruxelles - Belgium
- Evidences for clustering
- Cluster models non-microscopic (nucleus-nucleus
interaction) microscopic (NN
interaction) continuum states - Application 1 5H and 5He (microscopic 3 body)
- Application 2 triple a process
(non-microscopic) - Application 3 18F(p,a)15O (reaction, microscopic
2 body) - Conclusions
2Introduction
- Clustering well known effect in light nuclei
- Nucleons are grouped in clusters
- Best candidate a particle (high binding energy,
almost elementary particle) ? Ikeda diagram
cluster states near a threshold (8Be, 20Ne, etc - Halo nuclei special case of cluster states
- Beyond the nucleon level hypernuclei quarks
etc.
31. Evidence for clustering
- Large distance between the clusters? wave
function important at large distancesExample
a16O
3-
cluster
1-
a16O
4
Non-cluster
2
0
20Ne
Comparison of radiia1.4 fm, 16O2.7 fm For 20Ne
0 ltr2gt1/23.9 fm For 20Ne 1- ltr2gt1/25.6
fm
4Evidence for clustering
Defines the reduced width g2 (Plpenetration
factor)
gW2Wigner limit3?2/2ma2
7Li a cluster states and neutron cluster
states
q2(a)0.01q2(n)0.26
q2(a)0.52q2(n)0
5Evidence for clustering
Exotic cluster structure 6He6He in 12BeM.
Freer et al, Phys. Rev. Lett. 82 (1999) 1383
Rotational bandE(J)E0?2J(J1)/2mR2 With
Rdistance ? estimate CalculationP.D., D. Baye,
Phys. Lett. B505 (2001) 71Mixing of 6He6He and
a8He
Particular cluster structure halo nuclei
11Be10Ben 6Heannneutronsimplest
cluster
6Cluster models vs ab initio models
- cluster models assume a cluster structure ?
effective nucleon-nucleon interaction ? direct
access to continuum states - microscopic (full antisymmetrization, depend on
all nucleons) - non microscopic (nucleus-nucleus interaction)
- semi-microscopic (approximate treatment of
antisymmetrization) -
- ab initio models more general try to determine
a cluster structure realistic nucleon-nucleon
interaction - Antisymmetrized Molecular Dynamics (AMD)
- Fermionic Molecular Dynamics (FMD)
- No Core Shell Model (NCSM)
- Greens Function Monte Carlo
- Etc
72. Cluster Models
- Several variants
- Non microscopic ? 2 clusters nucleus-nucleus
interaction ? 3 clusters - Microscopic ? 2 clusters nucleon-nucleon
interaction - ? 3 clusters
-
y
x
8Cluster Models
- 2-cluster models
- General description
- Microscopic approach The generator coordinate
method (GCM) - Continuum states the R-matrix method
- 3-cluster models
- Hyperspherical coordinates
- General description
92-body models
Non-microscopic 2 particles without structure
potential model
- Microscopic (cluster approx.)RGM, GCM
r
r
ex aa, p16O, etc.
F1 ,F2internal wave functions Solved by the
GCM ex 12Ca, 18Fp, etc.
10The Generator Coordinate Method (GCM) for 2
clusters
The wave functions are expanded on a gaussian
basis 1. potential model (non
microscopic) Schrödinger equation Expansion
? rquantal relative coordinate Rngenerator
coordinate (variational calculation)
11The Generator Coordinate Method (GCM) for 2
clusters
2. Microscopic
RGM notation
GCM expansion
Slater Determinants
GCM notation
? the basis functions are projected Slater
determinants (b1b2b) ? variational calculation
needs matrix elements
? matrix elements between Slater determinants
(projection numerical)? can be extended to
3-clusters
12Continuum states
- Necessary for reactions
- Exotic nuclei low Q value ? continuum
important - Simple for 2 clusters, difficult for 3 clusters
- Various methods
- Exact calculation of the phase shift
- Approximations Complex scaling, Analytic
continuation (ACCC), box, etc. (in general,
only resonances) - Use of the R-matrix method the space is divided
into 2 regions (radius a) - Internal r a Nuclear coulomb
interactions antisymetrization important - External r gt a Coulomb only
antisymetrization negligible
13The R-matrix method phase-shift calculation
- 2 body calculations (spins zero)
Internal wave function combination of Slater
determinants
External wave function Coulomb (Ulcollision
matrix)
Bloch-Schrödinger equation
- With L Bloch operator
- restore the hermiticity of H over the internal
region) - ensures
14The R-matrix method phase-shift calculation
Solution of the Bloch-Schrödinger equation
R-matrix equations
? N1 unknown quatities (Ul, fl(Rn)), N1
equations ? ltgtImatrix element over the internal
region ? stability with the channel radius a is
a strong test
153-body models Hyperspherical coordinates
Jacobi coordinates x1, y1 3 sets (xi, yi), i1,2,3
y1
x1
Hyperspherical coordinates
6 coordinates
Hamiltonian
16Kinetic energy
- With K2(W) angular operator (equivalent to L2
in two-body systems) - Eigenfunctions
- hyperspherical harmonics
- Eigenvalues K(K4)
- With lx, ly angular momenta associated with
x, y - K hypermoment
- FK(a) Jacobi polynomial
- Spin
with S total spin
17Schrödinger equation
YJMp is expanded over the hyperspherical harmonics
To be determined
Known functionshyperspherical harmonics
- glx,ly,L,S
- Set of equations for
- Truncation at K Kmax
- Can be extended to 4-body, 5-body, etc
18Three-body Models
Non microscopic
Microscopic
y1
x1
Hamiltonian
Hamiltonian
Vijnucleus-nucleus interactionProblems with
forbidden states Ex 6Heann 12Caaa 14Be1
2Benn
Vijnucleon-nucleon interaction Ex
6Heann 5Htnn
Projection 7-dim integrals
193. Application to 5H and 5HeA. Adahchour and
P.D., Nucl. Phys. A 813 (2008) 252
- 3.1Introduction
- 5H unbound, with N/Z4 very large value
- Expected 3-body structure 3Hnn
- Many works experiment theory
- Difficult for theory and experiment (unbound AND
3-body structure) ? still large uncertainties on - ground state (Energy, width)
- level scheme?
- Isospin symmetry ? expected 5He(T3/2) analog
states (suggested by Ter-Akopian et al., EPJ
A25 (2005) 315)
20Application to 5H and 5He
3.2 Conditions of the calculation microscopic
3-cluster
NN interaction Minnesota HH0uV (uadmixture
parameter in the Minnesota interaction u1) From
3Hep u1.12
21Application to 5H and 5He
Cluster structure
n
x
5H3Hnn Tz3/2,T3/2
y
5He3Henn coupled with 3Hnp Tz1/2,
T1/2,3/2
Main difficulty unbound states ? need for
specific methods ACCC
22Application to 5H and 5He
- 3.3 Analytic Continuation in the Coupling
Constant (ACCC) V.I. Kukulin et al., J. Phys. A
10 (1977) 33 - Write H as HH0lV (l1 is the physical value,
E(l1)gt0? unbound state) - Determine l0 such as E(l0)0
- For l gt l0 E(l)lt0 ? bound-state calculation
-
-
- l gt l0 x real, k imaginary, E real lt0
- l lt l0 x imaginary, k complex, Ek2ER-iG/2 ?
the width can be computed
Padé approximant
- Choose MN1 l values l gt l0 ? determine ci,dj
- Use l1 ? k complex
- ? Main problem stability!
23Application to 5H and 5He(T3/2)
5H,5He
T3/2 state??3-body decay an and td forb.
3Henn
3Hnp
5H
3Hnn
5He
T1/2 states an structure
4Hen
24Application to 5H and 5He(T3/2)
Microscopic wave function
ci(r) expanded in gaussians centred at R
Generator Coordinate Method Energy curves E(R)
eigenvalue for a fixed R value
5H
Convergence with Kmax
Different J values
? fast convergence
? 1/2 expected to be g.s.
253. Results for 5H and 5He(T3/2)
Application of the ACCC method ? search for
resonance energies and widths ? test of the
stability with N (Padé approximant)
Er 2 MeVG 0.6 MeV ? theoretical
uncertainties
263. Results for 5H and 5He(T3/2)
5He
Energy curves
Weak coulomb effectsessentially threshold
273. Results for 5H and 5He(T3/2)
Th.1 N.B. Shulgina et al., Phys. Rev. C 62
(2000) 014312 Th.2 P.D. and A. Kharbach, Phys.
Rev. C 63 (2001) 027001 Th.3 K. Arai, Phys.
Rev. C 68 (2003) 03403 Th.4 J. Broeckhove et
al., J. Phys. G. 34 (2007) 1955 Exp.1 A.A.
Korsheninnikov et al., PRL 87 (2001)
092501 Exp.2 M.S. Golovkov et al., PRL 93
(2004) 262501
? broad state in 5He Ex21.3 MeV G1 MeV
284. Application to 12C
poorly known
- Main issues
- Simultaneous description of a-a scattering and of
12C? - Bose-Einstein condensate?
- Astrophysics (Triple-a process, Hoyle state
others?)
aaa
Well known
- Two approaches
- Microscopic theory
- Non microscopic theory ? 3a continuum states?
294. Application to 12C
- Microscopic models
- RGM M. Kamimura (Nucl. Phys.A 351 (1981) 456)
form factors of 12C - GCM E. Uegaki et al., PTP62 (1979) 1621
triangle structure of 12C P.D., D.Baye, Phys.
Rev. C36 (1987) 54 8Bea model 8Be(a,g)12C S
factor 2 resonance (with the 02 state as
bandhead) - GCM hyperspherical formalism aaaM. Theeten
et al., Phys. Rev. C 76 (2007) 054003 Only 12C
spectroscopy (energies, B(E2), densities)
30a-a phase shifts
12C microscopic
12C Energy spectrum
12C energy curves
GCM
exp
31Application to 12C
B. Non-Microscopic model
- aa scattering well described by different
potentials - deep potentials (Buck potential)
- shallow potentials (Ali-Bodmer potentials)
- we may expect a good description of the 3a system
- Removal of a-a forbidden states projection
method (V. Kukulin) supersymmetric
transformation (D. Baye)
- Buck potential (Nucl. Phys. A275 (1977) 246)
- V-122.6 exp(-(r/2.13)2)
- deep
- l independent
- Others a-a phase shifts have a similar quality
3212C spectrum, J0
0
-2
-4
Ali-Bodmer potential(shallow)
Buck potential (deep)
-6
ABD0
AB
Bucksup
Bucksup x 1.088
Buck proj
exp
? no satisfactory potential!!
33Application to 12C
- Calculation of 3a phase shifts
- Need for appropriate a-a potentials (3a
potentials?) - Derivation of a-a potentials
- from RGM kernels (non local)
- M. Theeten et al., PRC 76 (2007) 054003
- Y. Suzuki et al., Phys. Lett. B659 (2008) 160
- Fish-bone model reproduces aa and aaa
- Z. Papp and S. Moszkowski, Mod. Phys. Lett. 22
(2008) 2201 - Non local potentials ? difficult for 3-body
continuum states - Microscopic approach to 3-body continuum
states?In progress for ann
345. Application to 18F(p,a)15O Ref. M. Dufour
and P.D., Nucl. Phys. A785 (2007) 381
- Very important for novae
- Many experimental works
- Direct (18F beam)
- Indirect (spectroscopy of 19Ne)
- 2 recent experiments
- Microscopic cluster calculation (19-nucleon
system) - High level density ? limit of applicability
- Questions to address
- Spectroscopy of 19F and 19Ne (essentially
J1/2,3/2 s waves) - 18F(p,a)15O S-factor
- How to improve the current status on 18F(p,a)15O?
35Application to 18F(p,a)15O
- NN interaction modified Volkov (reproduces the Q
value) spin-orbit - Multichannel p18F a15O n18Ne
- Shell model space sd shell for 18F, 18Ne, p
shell for 15O ? 18F J1 (x7), 0 (x3), 2
(x8), 3 (x6), 4 (x3), 5 (x1) 15O J1/2-,
3/2- 18Ne J0 (x3), 1 (x2), 2 (x5), 3
(x2), 4 (x2) - ? many configurations
- Spectroscopy of 19Ne and continuum states
(R-matrix theory) - At low energies (below the Coulomb barrier), s
waves are dominant ? J1/2 and 3/2
36J3/2
19
E
(
Ne)
19
E
(
F)
cm
cm
Experiment
Theory
1
5
18
n
F
18
n
F
0
4
18
p
O
3
-1
-2
2
18
Fitted (NN int)
p
O
7.24
7.26
-3
1
7.08
6.53
18
18
p
F
p
F
6.44
0
-4
6.50
6.42
5.50
-5
-1
15
15
-6
-2
a
N
a
N
4.03
15
a
O
3.91
-7
-3
15
a
O
-4
-8
1.54
1.55
-9
-5
19
19
19
19
Ne
F
F
Ne
37J1/2 (no parameter)
Ecm (19Ne)
19
E
(
F)
cm
Experiment
Theory
1
5
18
18
n
F
n
F
0
4
18
p
O
-1
3
8.65
Near threshold
-2
2
8.14
?
18
p
O
7.36
-3
1
18
18
p
F
p
F
6.26
-4
0
5.94
(5.34)
5.35
-5
-1
-6
-2
15
15
a
N
a
N
15
15
a
O
a
O
-7
-3
-8
-4
-9
-5
-10
-6
0
0
-11
19
19
19
19
-7
Ne
F
F
Ne
38- Microscopic 18F(p,a)15O S factor
1/2 s wave ? important down to low energies?
(constructive) interference with the subthreshold
state
39- Drawbacks of the model
- Some 3/2 resonances missing
- 1/2 properties not exact (in 19F, unknown in
19Ne) - R matrix allows to add resonances (3/2) or to
modify their properties (1/2)
E
(MeV)
cm
2
2
7.90
known in 19Funknown in 19Ne
1
1
18
p
F
?modified 19Ne spectrum
0
18
n
F
6.00
0
-1
5.35
-1
-2
Theory
exp.
15
a
O
-3
J1/2
19F, J1/2
-4
-5
-6
0
19
-7
Ne
? prediction of two 1/2 states E-0.41 MeV,
G231 keV E 1.49 MeV, G296 keV, Gp/G0.53
403/2 resonancesinterferences?
- Consistent with experiment
- Uncertainties due to 3/2 strongly reduced near
0.2 MeV (1/2 dominant)
41J.-C. Dalouzy et al Ganil LLN, Ref Phys. Rev.
Lett. 102, 162503 (2009) 19Nep? 19Nep ? 18Fpp
18Fp
19Ne
? evidence for a broad 1/2 peak (E) near
Ecm1.45 MeV, G292?107 keV Cluster calculation
Ecm1.49 MeV, G296 keV
42- A.C. Murphy et al
- Edinburgh TRIUMF (radioactive 18F beam) Phys.
Rev. C79 (2009) 058801 - Simultaneous measurement of 18F(p,p)18F and
18F(p,a)15O cross sections - R-matrix analysis ? many resonances
? no evidence for a 1/2 resonance (E too low?)
436. Conclusions
- Cluster models
- Different variants microscopic semi-microscopi
c non microscopic - Continuum accessible (R-matrix)
- 5H, 5He(T3/2)
- 5H resaonable agreement with other works
- 5He (T3/2) analog state of 5H above 3Hnp
threshold ? Ex21.3 MeV, G1 MeV - 12C
- Impossible to reproduce 2a and 3a simultaneously
(all models) - 3a continuum future microscopic studies possible
(ann in progress) - 18F(p,a)15O
- The GCM predicts a 1/2 resonance (s wave) near
the 18Fp threshold - Observed in an indirect experiment
- Not observed in a direct experiment