Title: Sistemas Aut
1Sistemas AutônomoseRoteamento na
InternetEdgard Jamhour
2Estrutura Física de Redes IP
- Os equipamentos de redes IP são comumente
estruturados em 3 níveis - Nível Usuário
- Equipamento que atende a um usuário ou a uma rede
privada - CPE Customer Premises Equipment ou
- RG Residential Gateway
- Nível Acesso
- Infra-estutura que transporta dados não agregados
- ADSL, Cable Model, Ethernet, Frame-Relay, ATM,
etc. - Nível Núcleo (Core ou Backbone)
- Infra-estrutura que transporta dados agregados
- ATM, SDH, Gigabit-Ethernet
3Exemplo
- Múltiplas tecnologias de acesso podem ser
agregadas ao Backbone - No caso do ADSL, o equipamento de rede
responsável por multiplexar as linhas de acesso
ao backbone é denominado - DSLAM Digital Subscriber Line Access Multiplexer
linha de baixa capacidade
linha de alta capacidade
PPPoE
DSLAM
CPE
CPE
CPE
B-RAS
Rede Backbone
DSLAM
CPE
CPE
Broadband Remote Access Server (responsável por
autenticar e policiar o tráfego do usuário)
CPE
4Exemplo
- Redes backbones interligam multiplas redes de
acesso - A rede Internet é formada pela interligação
desses backbones
operadora 1
operadora 2
CPE
CPE
Rede Backbone
CPE
Rede Backbone
CPE
CPE
CPE
5Estrutura Lógica da Internet
- Como as informações são roteadas na Internet?
200.0.0.0/24
- Como as tabelas de roteamento são atualizadas?
6Estrutura Lógica da Internet
- A internet é estruturada na forma de sistemas
autônomos
B
F
G
A
E
H
C
I
D
J
SISTEMA AUTÔNOMO 2
SISTEMA AUTÔNOMO 1
X
Y
Z
SISTEMA AUTÔNOMO 3
7Sistema Autônomo(Autonomous System - AS)
- Um AS é uma rede que divulga seus endereços para
outras redes da Internet. - Propriedades do AS
- Possui os seus próprios IPs.
- Seus endereços independem do provedor de acesso.
- Pode conectar-se a vários provedores
simultaneamente.
Redes pertencentes ao AS
Conexão com outro AS
F
G
H
I
J
Conexão com outro AS
8Exemplos de SA
- Endereço www.pucpr.br (200.192.112.20)
- AS 13522
- Prefixes3
- IP addrs8192
- IPs/Prefix2730
- AS namePontificia
- AS descrUniversidade Catolica do Parana
- CountryBR
- Allocated19990628
- RIRLACNIC
- BGP Prefix
- Prefix200.192.112.0/21
9Exemplos de SA
- Endereço www.google.com
- AS 15169
- Prefixes109
- IP addrs122624
- IPs/Prefix1124
- AS nameGOOGLE
- AS descrGoogle Inc.
- CountryUS
- Allocated20000330
- RIRARIN
- BGP Prefix
- Prefix209.85.128.0/17
10Atribuição de Endereços na Internet
- IANA
- The Internet Assigned Number Authority
- Atribuição de Endereços
- LIR Local Internet Registry
- NIR National Internet Registry
- RIR Regional Internet Registry
- AfriNIC (African Network Information Centre) -
Africa Region - APNIC (Asia Pacific Network Information Centre) -
Asia/Pacific Region - ARIN (American Registry for Internet Numbers) -
North America Region - LACNIC (Regional Latin-American and Caribbean IP
Address Registry) Latin America and some
Caribbean Islands - RIPE NCC (Réseaux IP Européens) - Europe, the
Middle East, and Central Asia
11Exemplo de AS
- Bloco de Endereços do AS
- 200.17.0.0/16 (255.255.0.0)
- 200.17.0.0 ao 200.17.255.255
G 200.17.1.1 H 200.17.2.1 J 200.17.3.1
200.17.1.0/24
Conexão com outro AS
200.17.2.0/24
F
G
H
I
O AS pode divulgar rotas agrupadas 200.17.0.0/16
J
200.17.3.0/24
12Tipos de AS
- Sistemas autônomos podem ser
- Stub AS
- ligados à Internet através de um único ponto de
saída. - Também são chamados de single-homed
- Transit AS
- Sistemas Multihomed que permitem tráfego
originário fora desse SA poder passar através
dele para outro SA diferente. - Os ISP são sistemas deste tipo.
- Non-Transit
- Não permitem transporte de tráfego envolvendo
outros AS.
Propagação de Rotas
13Relacionamento entre ASsPeering e Transit
- Quando dois AS se interconectam de maneira
gratuita, visando benefício mútuo de troca de
tráfego, eles são denominados peer. - ATM acordo de tráfego multi-lateral
- Quando o relacionamento é comercial, a
conectividade é denominada transit.
14IXP Internet Exchange Point
- Um IXP permite a interconexão direta de vários
ASs, minimizando o número de saltos - Atualmente, a tecnologia mais utilizada para
implementar IXP é o Ethernet. - Em muitos países a manutenção dos IXP é
subsidiada por órgãos públicos
15PTT Brasil
- No Brasil a denominação utilizada para IXP é
PTT - PTT Ponto de Troca de Tráfego
- PIX Ponto de Interconexão ou ponto de acesso ao
PTTMetro. - PTTMetro
- Projeto do Comitê Gestor da Internet no Brasil
(CGIbr) que permite a interconexão direta entre
as redes ASs que compõem a Internet Brasileira.
16Backbone RNP
- O backbone da RNP oferece concetividade nacional
com nível de Gigabit
17Quem não é AS, pertence a um AS
Este roteador pode ter apenas uma rota para
Internet
Esta rede pertence ao AS1
Esta rede pertence ao AS2
Gateway Default da Rede Corporativa
CPE
CPE
A
B
F
G
E
H
C
I
D
J
Quantas rotas este roteador precisa conhecer?
SISTEMA AUTÔNOMO 2
SISTEMA AUTÔNOMO 1
X
Y
Z
SISTEMA AUTÔNOMO 3
18Tipos de Roteadores no AS
- Exterior Gateways
- Troca informações com roteadores pertencentes a
outros AS. - Equipamento muito caro, com alta capacidade de
memória. - Interior Gateways
- Troca informações apenas no interior do seu AS.
- Roteador comum.
Gateway Interno
F
G
H
I
J
Gateway Externo
19Sistema Autônomo AS
- Informações de roteamento para os roteadores
internos - Eles precisam conhecer todas as rotas no interior
do AS - A propagação das rotas é baseada em difusão
seletiva (multicast) - Utiliza IGP Interior Gateway Protocol
- OSPF Open Shortest Path First
- Informações de roteamento para roteadores
externos - Precisa ser padronizada
- A propagação de rotas depende de contratos entre
os administrados de AS - Baseada em EGP Exterior Gateway Protocol
- BGP Border Gateway Protocol
20IGP e EGP
- IGP Interior Gateway Protocols
- Informações de Roteamento no Interior do AS
- RIP Routing Information Protocol
- OSPF Open Shortest Path First
- IS-IS Intermediate System to Intermediate System
- EGP Exterior Gateway Protocols
- Informações de Roteamento entre ASs
- BGP Border Gateway Protocol
21EGP e IGP
216.1.2.0/24
Conhece apenas as rotas no interior do AS
Conhece todas as rotas da Internet
CPE
CPE
EGP
A
B
F
G
E
H
IGP
IGP
C
I
D
J
SISTEMA AUTÔNOMO 2
SISTEMA AUTÔNOMO 1
L
prefixo 216.1.2.0/16
prefixo 220.2.0.0/16
M
220.2.1.0/24
22Exemplo de Roteador de Borda
- Roteadores de borda atuais precisam suportar
aproximadamente - 222.000 rotas (junho 2007)
- Mais 50 para rotas privadas de clientes
- A fim de processar essas rotas sem grande atraso
na propagação dos pacotes os roteadores precisam - Muita memória de acesso rápido
- Alta capacidade de processamento
- Roteadores com essa capacidade podem ter custos
superiores a U 50K.
23Conceitos Básicos de Roteamento
- RIB (Router Information Base)
- conjunto de rotas configuradas no roteador
- origem estática
- protocolos de roteamento
- icmp (redirecionamento)
- pode conter mais de uma rota para o mesmo destino
- FIB (Forwarding Information Base)
- conjunto de rotas ativas (não ambiguas)
- pode conter o endereço MAC do próximo salto
- contém apenas as melhores rotas
ir até E por B com custo 2
A
B
E
C
D
ir até E por C com custo 3
24Algoritmos de Roteamento
- Algoritmo de Roteamento Global
- tem conhecimento de toda estrutura da rede
- algoritmo de estado de enlace LS (link-state)
- Algoritmo de Roteamento Decentralizado
- nenhum nó tem informação completa da rede
- algoritmo de vetor de distâncias DV (distance
vector)
3
5
2
2
3
2
1
1
25Vetores de Distância
- A) Os roteadores divulgam as redes a que estão
diretamente conectados por seus enlaces - B) Apenas as melhores ofertas são aceitas para
cada rede. - C) A rotas são propagadas com custo acrescido
rede A por B2
rede A por A.1
acesso a rede A com custo 2
acesso a rede A com custo 1
B
1
2
1
X
2
rede A
A
C
D
2
1
3
acesso a rede A com custo 2
1
acesso a rede A com custo 1
rede A por C3
rede A por A.2
26Atualizações de Rota Vetor de Distância
- Por re-anuncio e temporização
- As rotas tem um tempo de vida (TTL)
- Os roteadores re-anunciam periodicamente suas
rotas - Rotas cujo re-anuncio não é recebido dentro do
prazo de vida são desativadas. - Rotas de maior custo previamente ignoradas passam
a ser aceitas. - O tempo de atualização das rotas é
aproximadamente nsaltos TTL - Por atualizações (triggered updates)
- Quando um roteador detecta uma alteração em sua
tabela ele re-anuncia todas as suas rotas. - Essa técnica reduz o tempo de atualização mas
gera grande carga de mensagens de atualização na
rede.
27Estado de Enlace
- Roteadores trocam informações sobre a topologia
da rede (roteadores, enlaces e redes). - Cada roteador mantém um banco de dados completo
com a descrição de toda topologia da rede (link
state database) - Os roteadores só repassam informações para
roteadores parceiros (protocolo Hello - também
usado como keep alive) - Os roteadores parceiros sincronizam sua base de
estado de enlace através de mensagens LSA (Link
State Advertisement)
hello
hello
Link State Database
Link State Database
A
B
lsa
lsa
28Atualizações de Rota Estado de Enlace
- Roteadores verificam se seus vizinhos estão
ativos pela mensagem Hello - As mensagens de atualização de rotas (LSA) são
enviadas somente se uma nova rota foi adicionada
ou removida.
novo LSA
29Divisão em Áreas
- Num protocolo de estado de enlace os requisitos
de memória crescem linearmente com o número de
enlaces (n) e o processamento cresce entre n
log(n) e n2. - Para prover escalabilidade em redes de grade
porte, é utilizado a estratégia de divisão por
áreas.
área B
ABR Roteador de Borda de Àrea
estado completo da própria área
ABR
ABR
resumo
resumo das outras áreas
área C
área A
30Vetores de Caminho e políticas
- O roteamento por vetor de caminho (path vector)
inclui informações de caminhos completos nos
anúncios de rota. - Essa estratégia permite determinar loops
200.17.1.0/24 via SA3
Y
Z
200.17.1.0/24
200.17.1.0/24 via SA3
X
W
EGP
SA3
200.17.1.0/24 via SA3, SA1
B
E
F
G
C
D
EGP
I
J
SA2
SA1
200.17.1.0/24 via SA3, SA2
31EGP - Exterior Gateway ProtocolsBGP
32BGP Border Gateway Protocol
- Protocolo de roteamento por vetor de caminho
- Versão 4 RFC 1771
- Motivação
- Segmentar a Internet em domínios (ASs)
administrados independentemente - Eliminar a necessidade de divulgar todas as rotas
entre ASs distintos. - Características
- Protocolo transportado por TCP
- Cabeçalho Padrão seguido de 5 tipos de mensagem
distintos.
33Mensagens BGP
- Open (Tipo 1)
- inicia uma sessão entre um par de roteadores BGP
- negocia recursos opcionais do BGP
- Update (Tipo 2)
- anuncia informações de roteamento de um BGP para
outro - Notification (Tipo 3)
- usada para indicar problemas com as mensagens
Open ou Update - KeepAlive (Tipo 4)
- utilizada para verificar se o parceiro está ativo
- Route-Refresh (Tipo 5)
- requisita que um roteador BGP reanuncie todas as
suas rotas
34Sessão BGP
- Speaker BGP
- roteador que pode enviar e receber mensagens BGP
- Parceiros BGP
- roteadores BGP com conexões TCP ponto-a-ponto
estabelecidas - Porta TCP 179
open
open ou notification
update
update
35Cabeçalho BGP
- Marcação (16 bytes)
- campo obsoleto, não é mais utilizado (preenchido
com 0xff) - Tamanho (2 bytes)
- máximo 4096 bytes
- Tipo da mensagem (1 byte)
- 5 tipos
Byte 1
Byte 2
Byte 3
Byte 4
Marcador
Marcador (cont.)
Marcador (cont.)
Marcador (cont.)
Tamanho da Mensagem
Tipo da Mensagem
Versão (4)
36Mensagens BGP Open
ID AS
Tempo de Suspensão
Identificador BGP
Tamanho Opcoes
Parâmetros Opcionais
Parâmetros Opcionais
- Identificador de AS
- número de 16 bits e.g. 65033
- AS Privado 64512 a 65535
- Tempo de Suspensão
- Tempo que o roteador espera (em segundos) sem
keep alive, antes de considerar a sessão como
morta - Keep Alive (30 s) 1/3 do tempo de suspensão (
90 s) - Identificador de BGP
- Endereço IP da interface do roteador
- Parâmetros Opcionais
- Formato TLV (e.g. autenticação e capacidades
adicionais - AS 4 bytes)
37Mensagem BGP Update
Tamanho Rotas Retiradas
Info. Rotas Retiradas
Rotas Retiradas
Tamanho do Atributos do Caminho
Atributos Caminho
Atributos Caminho
Informação de Alcance da Camada de Rede (NLRI)
- A mensagem de update permite adicionar ou remover
novas rotas. - Ela é composta de 3 seções
- Rotas Retiradas (Unfeasible Routes)
- e.g. 192.168.1.0/24, 10.0.0.0/8, etc.
- Atributos do Caminho
- atributos comuns a todas as rotas anunciadas
- Rotas Anunciadas (NLRI)
- e.g. 200.1.0.0/16
38Atributos BGP
- AS-PATH
- seqüência completa de ASs até o destino anunciado
- usado para detectar loops
- NEXT-HOP
- endereço do roteador BGP que corresponde ao
primeiro salto do caminho - LOCAL-PREFERENCE
- determina o melhor caminho para o tráfego de
saída - maior local-preference vence (default 100)
- MULTI-EXIT DESCRIMINATOR (EXIT)
- melhor caminho para o tráfego entrante
- ORIGIN
- Origem do Caminho IGP, EGP ou incomplete
- COMMUNITIES
- Comunidades aos quais as rotas anunciadas
pertencem
39Comunidades BGP
- No BGP rotas podem ser agrupadas em comunidades
(através da seção path da mensagem update) - comunidades permitem definir políticas para
exportação de rotas - o significado da comunidade é local ao AS
- Quatro bytes são utilizados 2 bytes AS 2 bytes
Valor - exemplo 65033500 (comunidade 500 do AS 65033)
- As seguintes comunidades são padronizadas
- internet (0)
- no-export (0xFFFFFF01)
- as rotas são anunciadas apenas aos peers que são
parte da mesma confederação BGP - no-advertise (0xFFFFFF02)
- a rota não é anunciada para nenhum BGP peers
- local-AS (0xFFFFFF03)
- a rota não é anunciada para nenhum BGP peer
externo, mesmo que confederado
40Confederação BGP
- Grandes redes podem ser divididas em vários AS
confederados. - Um AS confederado é visto como um simples AS
pelos demais ASs
AS 1
AS 2
i-BGP
AS 5
AS 4
AS 3
e-BGP
41Políticas BGP
- As políticas BGP permitem controlar de maneira
seletiva quais rotas serão recebidas e propagadas
para outros vizinhos.
- Exemplo
- Não importar rotas para a rede 10.0.0.0/8
- Não exportar rotas para a rede 10.0.0.0/8
42IGP - Interior Gateway ProtocolsRIPOSPF
43RIP Routing Information Protocol
- Originário do conjunto XNS da Xerox
- Duas Versões
- Versão 1 RFC 1058
- mensagens em broadcast
- não suporta CIDR (Classless InterDomain Routing)
- Versão 2 RFC 1723
- mensagens em multicast
- suporta CIDR
- Baseado em vetor de distâncias
44RIP
- Transportado em mensagens UDP (Porta 520)
- Cada mensagem pode informar até 25 rotas
- Dois tipos de mensagem
- Requisição (tipo 1) solicita informações de
roteamento - Resposta (tipo 2) envia informações de
roteamento - Indicado para redes de pequeno a médio porte.
- É muito simples de usar, mas torna-se ineficiente
para redes muito grandes. - Custo baseado em saltos (hop count)
- Valor máximo 15 (acima deste valor, a rede é
considerada inalcançável)
45Elementos de uma rede RIP
- Ativos envia e escuta mensagens RIP
- Passivos apenas escuta mensagens RIP
Rede 200.192.0.0/24
PASSIVO Usualmente host
ATIVO Usualmente roteador
Rede 200.134.51.0/24
46Exemplo de Operação RIP
G,R,D G Gateway R Rede D Distância
REDE 1
G1
(G1,R5,3)
(G1,R5,3)
REDE 2
2
G2
G3
(G2,R5,4)
(G3,R5,2)
1
REDE 4
REDE 3
G4
G6
G5
(G6,R5,1)
(G5,R5,1)
(G4,R5,5)
REDE 6
REDE 5
47Tabela de Roteamento
Next Hop G1 0 G2 0 G5 G2
Destino REDE 1 REDE 2 REDE 3 REDE 4 REDE 5 REDE
6
Metrica 2 1 2 1 2 3
Direto/ Remoto R D R D R R
Local/ RIP R L R L R R
Interface 2 2 2 1 1 2
48Timers para Rotas
- As mensagens de rotas (responses in RIP) são
enviadas a cada 30 segundos. - Time-out timer
- Inicializado todas as vezes que uma rota é criada
ou atualizada. - Se a rota não for atualizada em 180 segundos, ela
é considerada obsoleta. - Garbage collection Timer
- As rotas que estiverem expiradas por mais de 120
segundos são removidas.
49RIP Request e Response
- Um gateway pode enviar uma mensagem para outro
solicitando a atualização de uma rota específica.
RIP REQUEST
RIP RESPONSE
50RIP Versão 1 RFC 1058
- PROBLEMAS
- Não propaga máscaras (só permite definir rotas
segundo as classes A, B e C). - Envia mensagens em Broadcast.
- Não possui mecanismos de autenticação.
51RIP Versão 2 RFC 1723
- RIP Versão dois suporta
- Propaga as rotas para grupos multicast
- Suporta a definição de rotas com uso de máscaras.
- Autenticação por
- Message Digest (16 bytes MD5 da mensagem)
- Password Simples (senha de 6 bytes)
- Message Digest Key e Sequence Number (HMAC com
chave secreta) - Em todos esses casos, a autenticação é colocada
no início da mensagem.
52Formato das Mensagens RIP v2
Byte 2
Byte 3
Byte 4
Byte 1
Command (1 request, 2 response)
Version (2)
Reserved
Cabeçalho
Address Family (0xffff para Autenticação)
Tipo de Autenticação
Autenticação
Informação de Autenticação X 4
Address Family (2 para IPv4)
Tag de Rota
Entradas de Rota ....
IP Address
Subnet mask
Next Hop IP Address
Metric
Address Family (0xffff para Autenticação)
Tipo de Autenticação
Autenticação
Informação de Autenticação X 4
53Exemplo
- Inicialmente os roteadores tem apenas as rotas
das redes conectadas fisicamente a eles.
10.26.128.0 255.255.128.0
3
2
192.168.0.0 255.255.255.0
192.168.1.0 255.255.255.0
1
INTERNET
0.0.0.0 0.0.0.0
54Propagação da Rota 0
- A cada salto o custo da rota é acrescido de 1.
10.26.128.0 255.255.128.0
3
2
192.168.1.0 255.255.255.0
192.168.0.0 255.255.255.0
1
INTERNET
0.0.0.0 0.0.0.0
55Propagação da Rota 192.168.0.0
- Ofertas de rotas com custos mais alto são
descartadas.
10.26.128.0 255.255.128.0
3
2
192.168.1.0 255.255.255.0
192.168.0.0 255.255.255.0
1
INTERNET
0.0.0.0 0.0.0.0
56OSPF Open Shortest Path First
- Versão Atualv2
- RFC 2328 e RFC 1246
- Protocolo IGP por estado de enlace
- Único protocolo de roteamento dinâmico
obrigatório para roteadores. - Protocolo de roteamento completo, mais flexível
que o RIP. - RIPv2 permite apenas trabalhar com custo por
número de saltos. - OSPF permite utilizar técnicas mais genéricas
para cálculo das métricas das rotas.
57Dijkstra Shortest Path First (SPF)
- Princípio
- Encontrar o menor caminho entre um dos nós da
rede e todos os demais - Se D pertence ao melhor caminho entre AF, então o
melhor caminho é o melhor AD melhor DF. - Custo Llog(N) (Lenlaces e Nnós)
- Estratégia
- Escolher sempre o melhor nó adjacente
- Atribuir custos acumulativos a cada nó da rede
10
6
4
B
E
5
2
A
0
1
3
F
1
C
D
9
4
5
1
5
58Constrained Shortest Path First (CSPF)
- Permite impor restrições adicionais ao invés de
escolher simplesmente o caminho mais curto - As restrições podem ser de várias naturezas
- restringir o uso de enlaces indisponíveis, pouco
confiáveis ou muito lentos (menos banda) - Duas técnicas são utilizadas
- Aparar enlaces indesejáveis (eliminá-los do grafo
- prunning) - Criar uma nova métrica que incorpora outras
restrições em seu cálculo - Problema
- Todos os roteadores precisam usar a mesma
métrica, ou poderão ser criadas rotas em loop.
59Equal Cost Mutipath (ECMP)
- Geralmente, quando dois caminhos de custo
idêntico são encontrados, o primeiro a ser
descoberto é mantido. - Isso pode levar a uma sub-utilização da
capacidade da rede. - No ECMP os roteadores procurar efetuam
balanceamento de carga entre caminhos de custo
idêntico. - Roteadores que suportam ECMP criam regras
automáticas de balanceamento utilizando
parâmetros como - O endereço de origem ou destino dos pacotes
encaminhados. - A marcaçao diffserv
- O tipo de tráfego transportado
60Conceitos do OSPF
- Um roteador OSPF deve ter um identificador único
em todo o sistema Autônomo - identificador de roteador endereço IP de uma das
interfaces (geralmente o menor) - identificador de área exclusivo em um sistema
autônomo - Os seguintes métodos de autenticação são
suportados - tipo 0 sem autenticação checksum
- tipo 1 proteção adicional contra erro de
configuração - tipo 3 autenticação criptográfica MD5
61Áreas OSPF
- No OSPF, áreas são organizadas em uma hierarquia
de dois níveis - área zero backbone do AS
- demais áreas conectadas ao backbone
- Os roteadores que conectam uma área ao backbone
são denominados ABR - Os ABR transmitem informações sumarizadas para os
demais roteadores da sua área. - Se uma única área for utilizada, a quantidade de
roteadores é limitada (menos que 200 para
roteadores legados).
62Terminologia OSPF
BACKBONE OSPF Area 0.0.0.0
Area 0
N1
R0
Area 3
Roteador de Fronteira de Área (ABR)
N2
R1
R3
Area 1
R2
Fronteira de AS
Area 2 (Stub)
R7
LSA NSA
R4
R8
R6
Rx
R5
Roteador de Fronteira de AS (ASBR)
N1
Rede RIP
63Terminologia OSPF
- Roteadores Intra-Area
- Conhecem apenas a topologia de rede do interior
de sua própria área. - Roteadores de Fronteira de Área (ABR)
- Conhecem duas ou mais áreas aos quais estão
diretamente conectados. - Efetuam agregação de rotas utilizando CIDR (a
agregação pode ser ativada ou não) - a agregação interfere no funcionamento do LDP
(MPLS) - Roteadores de Fronteira de AS (ASBR)
- Trocam informações com outros AS e podem
pertencer a qualquer área.
64Funcionamento do OSPF
- Protocolo de Estado de Enlace
- Protocolo OSPF é diretamente encapsulado no IP
(protocolo tipo 89). - São transmitidos em multicast para o endereço
padrão 224.0.0.5 e 224.0.0.6. - Mensagens do OSPF
- Hello
- Descrição do Banco de Dados
- Solicitação do Estado de Enlace
- Atualização do Estado de Enlace
- Reconhecimento do Estado de Enlace
65Mensagens OSPF
- Hello
- usada para descobrir vizinhos e manter o
relacionamento entre eles - DataBase Description
- lista um diretório de entradas de estado de
enlace - LinkState Request
- requisita uma ou mais informações específicas de
estado de enlace - LinkState Update
- envia a informação de uma ou mais entradas de
estado de enlace (LSA - Link State Advertisement) - LinkState Acknowledgement
- confirma o recebimento seguro da informação de
estado de enlace
66Mensagens OSPF
Byte 2
Byte 3
Byte 4
Byte 1
Version (2)
Tipo de Mensagem
Tamanho da Mensagem
Identificador de Roteador
Identificador de Área
Checksum da mensagem
Tipo de Autenticação
Dados de autenticação ...
Reservado
ID de Chave
Tamanho da Autentic.
Número de sequência
Cabeçalho OSPF
Byte 2
Byte 3
Byte 4
Byte 1
Máscara de rede
Opções
Prioridade Roteador
Intervalo de Hello
Intervalo de morte do roteador
Roteador designado
Roteador designado de backup
Primeiro Vizinho
Outros Vizinhos
Mensagem Hello
67Descoberta de Vizinhos
- Mensagem Hello
- Permite detectar novos vizinhos e verificar se
estão ativos - As mensagens são enviadas em intervalos de 10
segundos - O intervalo de morte é geralmente 40 segundos
- Prioridade do Roteador
- Utilizado para eleger o roteador designado
(designated router) - o desempate entre prioridades é feito para o
roteador com ID mais alto - Lista de Vizinhos
- Os vizinhos são identificados pelo seu ID (IP)
68Mensagens OSPF
Byte 2
Byte 3
Byte 4
Byte 1
MTU da Interface
Opções
Reservado
I
M
S
Número de sequência da descrição do banco de dados
Identificador de Área
Idade do Estado de Enlace
Opções
Tipo do Est. Enlace
Identificador de Estado de Enlace
Roteador Anunciante
Número de sequência do Estado de Enlace
Checksum
Tamanho
Outros Cabeçalhos de Anúncio de Estado de
Enlace ....
Database Description
69Sincronismo com Banco de Dados
- O método OSPF exige que cada roteador possua uma
cópia idêntica dos estados de enlace da rede. - Para evitar que informações em excesso sejam
trocadas pela rede, a seguinte estratégia é
adotada - O roteador anuncia uma lista de enlaces que ele
conhece (DataBase Description) - lista os identificadores de entrada da base, mas
não envia os dados propriamente dito - O roteador que recebe o anúncio solicita apenas
as entradas que estão faltando (Link State
Request) - O roteador que fez o anúncio envia mensagens
contendo os LSA solicitados (Link State Update)
70Mensagens OSPF
Byte 2
Byte 3
Byte 4
Byte 1
Tipo de Estado de Enlace
Identificador do Estado de Enlace
Roteador Anunciante
Outros Anúncios de Estado de Enlace
Requisitados....
Link State Request (LSR)
Contador de Anúncios (número de LSAs)
Idade do Estado de Enlace (LS)
Opções
Tipo de LS
Identificador de estado do enlace
Roteador Anunciado
Número de Sequência de Estado do Enlace
Checksum do Estado de Enlace (LS)
Tamanho
Flags
Reservado
Número de Enlaces
Identificador de Enlace (IP ou Subrede)
Dado do Enlace (Máscara de Subrede)
Tipo de Enlace
Contador de TOS
Métrica Padrão
TOS
Reservado
Métrica do TOS
Link State Update (LSU N X LSA)
71Redes de Acesso Múltiplo
- Vários roteadores são interconectados a um enlace
compartilhado com suporte a broadcast (multicast) - Mensagens de Hello são enviadas em multicast
(224.0.0.5) - Anúncios de LSA são feitos ao roteador designado
e ao roteador designado de backup usando um
endereço de multicast (224.0.0.6) - O roteador designado distribui os anúncios usando
o endereço de multicast 224.0.0.5.
72Tipos de Anúncio de Estado de Enlace
- No OSPF são utilizados 4 tipos de LSA
- Tipo 1 Router-Link Entry
- Anúncios de Enlaces de Roteador
- Produzidos por todos os roteadores e são
espalhados dentro de uma única área. - Tipo 2 Network-Link Entry
- Anúncios de Enlaces de Rede
- Produzidos pelo roteador designado e são
espalhados em uma única área. - Tipo 3 e 4 Summary-Link Entry
- Anúncio de Enlaces de Resumo
- Produzidos pelos roteadores de fronteira de área
ABR. Descrevem rotas para destinos em outras
áreas e para os roteadores de fronteira de AS. - Tipo 5 Autonomous System External Link Entry
- Anúncio de Enlaces de AS Externo
- São produzidos pelos roteadores de fronteira AS e
são espalhados por todos as áreas.
73Tipos de Áreas
- Áreas Stub
- Utilizadas para proteger roteadores com pouca
capacidade de CPU ou memória - Esse tipo de área é configurada no ABR, que
propaga apenas uma rota padrão para os demais
roteadores da área - Not So Stubby Area (NSSA)
- Uma LSA especial denominada LSA-NSSA é utilizada
para propagar rotas de uma área Stub para outras
áreas que não suporte OSPF (por exemplo RIP) - Essa mensagem tem um campo adicional que permite
apontar uma gateway diferente do roteador
anunciante. - Enlaces Virtuais
- Permitem criar enlaces virtuais (não físicos)
usados para aumentar a conectividade da malha
OSPF. - Exemplo interconectar duas áreas adjacentes
utilizando um roteador que não tem interface
direta com a Área 0.
74Links de Interesse
- http//logbud.com/visual_trace
- http//www.asnumber.networx.ch/
- http//www.bgp4.as/internet-exchanges
- http//bgplay.routeviews.org/bgplay/
75ANEXOS
76TTL e Número de Seqüência das LSA
- Um limite de idade (TTL) é atribuído às
informações anunciadas pelo LSA. - As LSAs precisam ser renovadas periodicamente. As
LSAs são removidas quando o TTL é esgotado. - Cada LSAs tem um TTL controlado por
temporizadores individuais. - As LSAs possuem também um número de seqüência que
permite distinguir anúncios novos de antigos.
3
4
5
2
6
contador em pirulito
1
7
-6
-5
-4
-3
-2
-1
0
8
9
13
10
11
12
77Conjunto de Caminhos
- Em alguns casos, os anúncios de caminho podem ser
agrupados em conjuntos.
SA3
200.17.0.0/24 seqüência SA1, conjunto SA2,
SA3
Y
Z
200.17.0.0/25
X
W
B
E
200.17.128.0/25
F
G
C
EGP
D
I
J
SA2
SA1