Title: NEUTRINO MASSES AND OSCILLATIONS Triumphs and Challenges
1NEUTRINO MASSES AND OSCILLATIONSTriumphs and
Challenges
R. D. McKeown Caltech
2Outline
- Historical introduction
- Neutrino Oscillations
- Vacuum Oscillations
- Matter Oscillations
- Neutrino Masses
- The Near Future
-
- Outlook
3Historical Perspective
UP CHARM TOP
DOWN STRANGE BOTTOM
ELECTRON ne MUON nm TAU nt
n1 n2 n3
4New Periodic Table
5Discovery of the Neutrino 1956
F. Reines, Nobel Lecture, 1995
6 EarlyHistory
- 1936- discovery of the muon
- (I. Rabi Who ordered that ??)
- 1950s - discovery of ns at nuclear reactors
- 1958 B. Pontecorvo proposes neutrino
oscillations - 60s and 70s n were studied with accelerator
experiments ne ? nm
"All you have to do is imagine something that
does practically nothing. You can use your
son-in-law as a prototype."
7More Recent History
- 1968 1st solar n anomaly evidence
- 1980s new interest in neutrino masses and
oscillations - ns as dark matter??
- 1980-present the quest for neutrino oscillations
- 1998 Super-Kamiokande obtains first evidence for
neutrino oscillations
8Two Generation Model
9Length Energy Scales
Super-K!!
En 1 GeV, Dm210-3 eV2 , L 1240 km
1030 kton H20 Cherenkov 11000 20 PMTs
11Super-Kamiokande Results
Wn gt 0.001
g K2K, MINOS
12Length Energy Scales
Super-K
En 1 GeV, Dm210-3 eV2 , L 1240 km
Chooz, Palo Verde
En 1 MeV, Dm210-3 eV2 , L 1.2 km
13Reactor Neutrino Experiments
- ne from n-rich fission products
- detection via inverse beta decay (nepgen)
- Measure flux and energy spectrum
- Variety of distances L 10-1000 m
14(No Transcript)
15Precise Measurements
Flux and Energy Spectrum g 1-2
16Early Reactor Oscillation Searches
103
Distance (m)
17Enter
- Long Baseline (180 km)
- Calibrated source(s)
- Large detector (1 kton)
- Deep underground (2700 mwe)
18Length Energy Scales
Super-K
En 1 GeV, Dm210-3 eV2 , L 1240 km
Chooz, Palo Verde
En 1 MeV, Dm210-3 eV2 , L 1.2 km
En 1 MeV, Dm210-5 eV2 , L 125 km
19Designed to test solar neutrino oscillation
parameters on Earth (!) KamLAND has a much
longer baseline than previous (reactor)
experiments
Statistical errors only
20Only a few places in the World could host an
experiment like KamLAND
21KamLAND uses the entire Japanese nuclear
power industry as a longbaseline source
22Narrow baseline range 85.3 of signal has 140
km lt L lt 344 km
- The total electric power produced as a
- by-product of the ns is
- 60 GW or...
- 4 of the worlds manmade power or
- 20 of the worlds nuclear power
23Spectrum Distortion
24KamLAND Detector
1000 Ton
(135 mm)
1879
(Cosmic veto)
25Selecting antineutrinos, Epromptgt2.6MeV
5.5 m fiducial cut
- - Rprompt, delayed lt 5.5 m
- - ?Re-n lt 2 m
- - 0.5 µs lt ?Te-n lt 1 ms
- 1.8 MeV lt Edelayed lt 2.6 MeV
- 2.6 MeV lt Eprompt lt 8.5 MeV
- Tagging efficiency 89.8
(543.7 ton)
Balloon edge
- In addition
- 2s veto for showering/bad µ
- 2s veto in a R 3m tube along track
- Dead-time 9.7
26Ratio of Measured and Expected ne Flux from
Reactor Neutrino Experiments
27Measurement of Energy Spectrum
28Oscillation Effect
29KamLAND best fit Dm2 7.9 x 10-5 eV2 tan2q
0.45
30(No Transcript)
31Solar Neutrino Energy Spectrum
32More missing neutrinos
33Neutrino Oscillations?
Rorbit
Just So ???
34Length Energy Scales
Super-K
En 1 GeV, Dm210-3 eV2 , L 1240 km
Chooz, Palo Verde
En 1 MeV, Dm210-3 eV2 , L 1.2 km
En 1 MeV, Dm210-5 eV2 , L 125 km
En 1 MeV, Dm210-11 eV2 , L 108 km
35Matter Enhanced Oscillation (MSW)
Mikheyev, Smirnov, Wolfenstein
36Enter SNO
ne d g p p e- ( CC )
nx d g p n nx ( NC )
nx e- g nx e- ( ES )
37 38Combined fit with solar neutrino data
Dm27.90.6-0.5x10-5 eV2 tan2q0.400.10-0.07
39Open circles combined best fit Closed circles
experimental data
40RECENT NEWSMiniBOONE refutes LSND!
LSND ruled out at 98 confidence
41Maki Nakagawa Sakata Matrix
Future Reactor Experiment!
CP violation
42lt
Why so different???
43New Periodic Table
44The Mass Puzzle
Seesaw mechanism
45Why havent we seen nR?Extra Dimension
- All charged particles are on a 3-brane
- Right-handed neutrinos SM gauge singlet
- ? Can propagate in the bulk
- Makes neutrino mass small
- (Arkani-Hamed, Dimopoulos, Dvali, March-Russell
- Dienes, Dudas, Gherghetta)
- Barbieri-Strumia SN1987A constraint
- ?Warped extra dimension (Grossman, Neubert)
- or more than one extra dimensions
- Or SUSY breaking
- (Arkani-Hamed, Hall, HM, Smith, Weiner
- Arkani-Hamed, Kaplan, HM, Nomura)
(From H.Murayama)
46The Quest for q13at the Daya Bay Nuclear
Power Plant
- Baseline 2km
- More powerful reactors
- Multiple detectors ? measure ratio
47Daya Bay nuclear power plant
- 4 reactor cores, 11.6 GW
- 2 more cores in 2011, 5.8 GW
- Mountains provide overburden to shield cosmic-ray
backgrounds
48DYB NPP region Location and surroundings
55 km
49Experiment Layout
50 Detector modules
- Three zone modular structure
- I. target Gd-loaded scintillator
- II. g-catcher normal scintillator
- III. Buffer shielding oil
- Reflector at top and bottom
- 192 8PMT/module
- Photocathode coverage
- 5.6 ? 12(with reflector)
20 t Gd-LS
LS
oil
Target 20 t, 1.6m g-catcher 20t, 45cm Buffer
40t, 45cm
51Sensitivity to Sin22q13
90 CL, 3 years
- Experiment construction 2008-2010
- Start acquiring data 2010
- 3 years running
52Goals for the future
- Establish q13 non-zero
- Measure CP violation
- Determine mass hierarchy
Also Majorana or Dirac Sterile species?
53ne Appearance
T2K- From Tokai To Kamioka
CP violation
matter
54NOnA - New Fermilab Proposal
L 810 km
55(No Transcript)
56Parameters Consistent with a 1 and 4 nm?ne
oscillation probability
57Daya Bay will complement NOnA
normal
Daya Bay
dCP
inverted
NOnA (5 yr n)
58(No Transcript)
59FNALto Homestake
60(No Transcript)
61Neutrino Factory -- CERN layout
1016p/s
1.2 1014 m/s 1.2 1021 m/yr
_
0.9 1021 m/yr
m ? e ne nm
3 1020 ne/yr 3 1020 nm/yr
oscillates ne ? nm interacts giving m- WRONG
SIGN MUON
interacts giving m
62Beta Beams
63Other Future Studies
- Double beta decay (mlt0.1 eV)
- (Majorana only!)
- Direct measurements (mlt 1 eV)
- (KATRIN)
- Cosmological Input (mlt0.2 eV)
- (Planck satellite)
64My prediction
And know the role of ns in
All in time for Keh-Feis 70th !!
65Happy Birthday Keh-Fei !!