Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen - PowerPoint PPT Presentation

1 / 45
About This Presentation
Title:

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen

Description:

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino Masses and the Neutrinoless Double – PowerPoint PPT presentation

Number of Views:239
Avg rating:3.0/5.0
Slides: 46
Provided by: metz153
Category:

less

Transcript and Presenter's Notes

Title: Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen


1
Double Beta DecayandNeutrino MassesAmand
FaesslerTuebingen
  • 1. Solution of the Solar Neutrino Problem
  • by SNO.
  • 2. Neutrino Masses and the Neutrinoless
    Double
  • Beta Decay Dirac versus Majorana
    Neutrinos
  • 3. Neutrino Masses and Supersymmetry

2
(1) Solar Neutrino Problem
  • Reaction Network
  • Oscillations
  • Fewer ?e on Earth detected
  • than produced in the Sun.
  • Oscillations depend on

3
Sudburry Neutrino Observatory
  • Creighton Mine
  • Ontario / Canada
  • (Zink Mine)

4
  • THE SNO CHERENKOV DETECTOR
  • WITH HEAVY WATER
  • 9456 Photomultipliers Ø 20 cm 55 of 4p
  • Cherenkow radiation of e-
  • Trigger 23 PMT
  • E? (Threshold) 6.75 MeV
  • Ø 17 m view from below

5
Cherenkov - Detectors
  • (ES) Elastic Neutrino Scattering
  • e- forward scattering
  • S-KAMIOKANDE SNO

e- (fast)
e- (fast)
?x
?e

W
Z0
?e
e-
e-
?x
6

111
6
Charged Current (CC)
  • e- backward
  • SNO

P
e-
P
W
Deuteron (p n)
?e
7
(NC) Neutral Current
  • n-capture in salt NaCl (n, ?)

P
n
?x
Z0
?x
Deuteron SNO
8
  • Assuming only Electron Neutrinos
  • (ES) 2.35106 F
  • (CC) 1.76106 F
  • (NC) 5.09106 F
  • Including Muon and Tauon ?

F(?e) 1.76106 (CC)
F(?µ?t) 3.41106 (CCES)
F(?e?µ?t) 5.09106 (NC)
F(?-Bahcall) 5.14106
9
  • ?1, ?2, ?3 Mass States
  • ?e, ?µ, ?t Flavor States
  • Theta(1,2) 32.6 degrees Solar KamLand
  • Theta(1,3) lt 13 degrees Chooz
  • Theta(2,3) 45 degrees S-Kamiokande

10
  • (Bild)

11
(2) Neutrinoless Double Beta Decay
  • The Double Beta Decay

0
1
2-
ß-
ß-
e-
e-
0
Egt2me
0
12
2?ßß-Decay (in SM allowed)
  • Thesis Maria Goeppert-Mayer
  • 1935 Goettingen

P
P
n
n
13
O?ßß-Decay (forbidden)
  • only for Majorana Neutrinos
  • ? ?c

P
P
Left
?
Phase Space 106 x 2?ßß
Left
n
n
14
GRAND UNIFICATION
  • Left-right Symmetric Models SO(10)
  • Majorana Mass

15
P
P
e-
?
?
e-
L/R
l/r
n
n
16
P
P
l/r
?
light ? heavy N Neutrinos
l/r
n
n
17
Theoretical Description
  • Simkovic, Rodin, Haug, Kovalenko, Vergados,
    Kosmas, Schwieger, Raduta, Kaminski, Gutsche,
    Bilenky, Vogel et al.

P
k
0
e2
P
k
e1
k
?
Ek
1
2-
n
Ei
n
0
0
0?ßß
18
(No Transcript)
19
Supersymmetry
  • Bosons ? Fermions
  • --------------------------------------------------
    ---------------------
  • Neutralinos

P
P
e-
e-
Proton
Proton
u
u
u
u
d
d
Neutron
Neutron
n
n
20
  • Majorana

21
The best choice
  • Quasi-Particle-
  • Quasi-Boson-Approx.
  • Particle Number non-conserv.
  • (important near closed shells)
  • Unharmonicities
  • Proton-Neutron Pairing

Pairing
22
(No Transcript)
23
Nucleus 48Ca 76Ge 82Se 96Zr 100Mo 116Cd 128Te 130Te 134Xe 136Xe 150Nd
T1/2 (exp) years gt9.5 1021 gt1.9 1025 gt1.4 1022 gt1.0 1021 gt5.5 1022 gt7.0 1022 gt8.6 1022 gt1.4 1022 gt5.8 1022 gt7.0 1023 gt1.7 1021
Ref. You Klap- dor Elli-ott Arn. Ejiri Dane-vich Ales. Ales. Ber. Staudt Klimenk.
ltmgteV lt22. lt0.47 lt8.7 lt40. lt2.8 lt3.8 lt17. lt3.2 lt27. lt3.8 lt7.2
?m(p)/M(n) lt200. lt0.79 lt15. lt79. lt6.0 lt7.0 lt27. lt4.9 lt38. lt3.5 lt13.
?(111)10-4 lt8.9 lt1.1 lt5.0 lt9.4 lt2.8 lt3.4 lt5.8 lt2.4 lt6.8 lt2.1 lt3.8
Only for Majorana ? possible.
24
  • gPP fixed to 2?ßß
  • Each point (3 basis sets) x (3 forces) 9
    values

25
(No Transcript)
26
(No Transcript)
27
Neutrinoless Double Beta Decay and the
Sensitivity to the Neutrino Massof planed
Experimentsx from R-QRPA m(n) x/T(1/2)
28
Neutrino-Masses for the Double 0?ß-Decay and
Neutrino Oscillations
  • Solar Neutrinos
  • Atmospheric ?
  • Reactor ? (Chooz KamLand)
  • with CP-Invariance

29
Solar Neutrinos (KamLand)
  • (KamLand)
  • Atmospheric Neutrinos

  • (Super-Kamiok.)

30
Reactor Neutrinos (Chooz)
CP
31
OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies m? OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies m?
Normal m3 m2 m1 m1ltltm2ltltm3 Inverted m2 m1 m3 m3ltltm1ltltm2
Bilenky, Faessler, Simkovic P. R. D
70(2004)33003
32
  • Normal
  • Inverted

33
  • (Bild)

34
(No Transcript)
35
(No Transcript)
36
SummaryNeutrinos Oscillations, Neutrino Masses
andthe Double beta Decay
  • 1. Solution of the Solar Neutrino Problem by
    theSudburry-Neutrino-Observatory (SNO)
  • Elastic Scattering (S-KAMIOKANDE)
  • Heavy Water (SNO Charged Currents)

e-
e-
?x
?c
Z0
W
?x
e-
e-
?c
?x
e-
n
P
P
P
W
Z0
P
P
n
n
?c
?x
d
d
37
2. Neutrinoless Double Beta Decay
  • Dirac versus Majorana Neutrinos
  • Grand Unified Theories (GUTs),
  • R-Parity violating Supersymmetry ?
  • Majorana-Neutrinos Antineutrinos
  • Direct measurement in the Tritium Beta Decay in
    Mainz
  • and Troisk

P
P
u
u
u
u
P
P
d
d
d
u
u
n
n
d
n
n
38
3. Neutrino Masses and Supersymmetry
  • R-Parity violating Supersymmetry mixes Neutrinos
    with Neutrinalinos (Photinos, Zinos, Higgsinos)
    and Tau-Susytau-Loops, Bottom-Susybottom-Loops ?
    Majorana-Neutrinos (Faessler, Haug, Vergados
    Phys. Rev. D )
  • m(neutrino1) 0 0.02 eV
  • m(neutrino2) 0.002 0.04 eV
  • m(neutrino3) 0.03 1.03 eV
  • 0-Neutrino Double Beta decay
  • ltmßßgt 0.009 - 0.045 eV
  • ßß Experiment ltmßßgt lt 0.47 eV
  • Klapdor et al. ltmßßgt 0.1 0.9 eV
  • Tritium (Otten, Weinheimer, Lobashow)
  • ltmgt lt 2.2 eV
  • THE END

39
  • ?-Mass-Matrix by Mixing with
  • Diagrams on the Tree level
  • Majorana Neutrinos

40
Loop Diagrams
  • Figure 0.1 quark-squark 1-loop contribution to mv

X
X
Majorana Neutrino
41
  • Figure 0.2 lepton-slepton 1-loop contribution to
    mv
  • (7x7) Mass-Matrix

X
Block Diagonalis.
X
42
7 x 7 Neutrino-Massmatrix
  • Basis
  • Eliminate Neutralinos in 2. Order

separabel
Mass Eigenstate
Vector in flavor space
for 2 independent and possible
43
  • Super-K

44
Horizontal U(1) Symmetry
  • U(1) Field
  • U(1) charge
  • R-Parity breaking terms must be without
  • U(1) charge change (U(1) charge conservat.)
  • Symmetry Breaking

45
How to calculate ?i33 (and ?i33) from ?333?
  • U(1) charge conserved!
  • 1,2,3 families
Write a Comment
User Comments (0)
About PowerShow.com