Title: Diapositive 1
1Denise Aragnol Instabilité du génome et
cancérogenèse CNRS/Université de la Méditerranée
CONTRÔLE DE LEXPRESSION DES GENES
Chez les eucaryotes
2DEFINITION DEXPRESSION GENIQUE
Expression génique recouvre lensemble des
mécanismes qui conduisent à lapparition dun
produit fonctionnel dun gène
Produit fonctionnel -Une protéine?
transcription traduction -Un ARN ?
transcription
3LES DIFFERENTS TYPES DARN
traduction
4TOUTES LES ETAPES DE LEXPRESSION GENIQUE SONT
REGULEES
nucleus
RNA localisation
cytoplasm
a more accurate outline of the events involved in
genome expression, especially in higher
organisms. Note that these schemes apply only to
protein-coding genes. Those genes that give rise
to non-coding RNAs are transcribed and processed
as shown but the RNAs are not translated.
Protein localisation
5UN EXEMPLE DARNm LOCALISE
Movement of RNA-containing granules in dendrites
of cultured neurons. ak Time-lapse images,
taken 20 s apart, of an anterograde-moving
granule (arrow). The granule is detected by
visualization of fluorescent SYTO-14, which binds
to RNA. The granule moves more than 5 m, with an
average velocity of 0.04 m s-1. This movement
was stimulated by depolarization
6IMPORTANCE DES INTERACTIONS MOLECULAIRES
7nucleus
TOUTES LES ETAPES DE LEXPRESSION GENIQUE SONT
REGULEES
RNA localisation
cytoplasm
Protein localisation
8UN SYNOPSIS DE LA TRANSCRIPTION
9LES PROMOTEURS EUCARYOTES SONT COMPLEXES
EXEMPLE DE PROMOTEUR RECONNU PAR LARN POL II
-TATAbox (-25) TATAWAW avec WA ou T -Inr
YYA(1)NWYY avec YC ou T
10LORGANISATION DES PROMOTEURS EUCARYOTE EST
DIFFERENTE DUN GENE A UN AUTRE
Eukaryotic promoters consist of a collection of
conserved short sequence elements located at
relatively diverse distances from the
transcription start site.
Alternative orientations for GC and CAAT box
elements are indicated by chevron orientation gt
normal orientation lt reverse orientation.
The glucocorticoid receptor gene is unusual in
possessing 13 upstream GC boxes (10 in the normal
orientation three in the reverse orientation).
11LES ARN POLYMERASES EUCARYOTES
-3 ARNpol différentes ARN pol I, ARN Pol II,
ARN Pol III compositions et fonctions
différentes, structures similaires -multimériques
(8 à 12 s. u.) gt500kDa LARNpol II eucaryote
est constituée de plus de 10 sous-unités
Functions of the three eukaryotic nuclear RNA
polymerases
Polymerase Genes transcribed ___________________
_________________________________ RNA polymerase
I (nucléole) 28S, 5.8S and 18S ribosomal RNA
(rRNA) genes RNA polymerase II Protein-coding
genes most small nuclear RNA (snRNA)
genes RNA polymerase III Genes for transfer
RNAs (tRNA), 5S rRNA, U6-snRNA, small
nucleolar (sno) RNAs, small cytoplasmic (sc)
RNA
12STRUCTURE DE LARN pol II (2001)
B.Enzyme en élongation à une résolution de 3,3
Å.La pince formée de parties de Rbp1 et Rbp2
effectue une rotation de 30 qui maintient la
matrice d ADN et le transcrit au sein du
complexe transcriptionnel. L extrapolation du
trajet probable des acides nucléiques au sein de
l enzyme montre que l ADN double brin situé en
aval fait contact avec la mâchoire inférieure
puis passe entre le lobe de Rbp2 et une partie de
la pince formée par Rbp1.Des flèches indiquent
les sites d entrée et de sortie de l ADN
(Protein Data Bank Accession Code 1i6H). Violet
mâchoire supérieurerose mâchoire
inférieurejaune lobevert foncé sillonblanc
hélice de pontageorange site actifvert pâle
porebleu murrouge pincebleu pâle ions Mg
2(Protein Data Bank Accession Code 1i50).Bleu
brin matricevert brin codantrose ARN. Le
code de couleur des domaines de l enzyme est le
même qu en (A)
Structure cristallographique de l ARN polymérase
II. A. Enzyme libre à une résolution de 2,8 Å.L
enzyme contient un sillon (Rpb1)bordé à son
entrée par une paire de mâchoires, supérieure
(partie de Rpb1 et Rpb9) et inférieure (Rbp5), et
au fond duquel se trouvent deux ions Mg 2 qui
indiquent l emplacement du site actif. Près du
site actif, lhélice de pontage (Rpb1) traverse
le sillon pour rejoindre Rpb2. Le pore localisé à
l arrière de l enzyme permettrait lentrée des
rNTP et la sortie de l extrémité 3 libre
(Protein Data Bank Accession Code 1i50).
13LES CARACTERISTIQUES DU DOMAINE C-TER de lARN
pol II
La RNA pol II possède un domaine C terminal
particulier, constitué de répétitions dun
heptapeptide (tyr-ser-pro-thr-ser-pro-ser) qui
peut présenter différents niveaux de
phosphorylation
14LES FACTEURS GENERAUX
PIC préinitiation complex
15LES FACTEURS EN AMONT
16DEBUT DE LELONGATION
5
3
CAAT
TATA
TAAC
ATAT
3
5
5
5
3
CAAT
TATA
TAAC
ATAT
3
5
5
17ELONGATION ET MATURATION SONT COUPLEES
18ADDITION DE LA COIFFE
The C-Terminal Domain (CTD) of RNA Polymerase II
Coordinates Transcription and Pre-mRNA
ProcessingThe CTD consists of 52 repeats of the
consensus heptapeptide Tyr-Ser-Pro-Thr-Ser-Pro-Ser
and serves as a platform for the ordered
assembly of the factors responsible for
transcription, pre-mRNA 5' capping, splicing, and
3' processing at different stages in the
synthesis of the nascent transcript.
19LEXCISION EPISSAGE DES INTRONS
Structure of U1-snRNP. The mammalian U1-snRNP
comprises the 165-nucleotide U1-RNA plus ten
proteins. Three of these (U1-70K, U1-A and U1-C)
are specific to this snRNP, the other seven are
Sm proteins that are found in all the snRNPs
involved in splicing. The U1-RNA forms a
base-paired structure as shown. The U1-70K and
U1-A proteins attach to two of the major
stem-loops of this base-paired structure, and
U1-C attaches via a protein-protein interaction.
The Sm proteins attach to the Sm site. Based on
Stark et al. (2001)
20FORMATION DE LEXTREMITE 3 DE LARNm
CPSF Cleavage polyadenylation specificity
factor CstF cleavage stimulation factor PAP
polyA polymerase
21DE NOUVELLES INTERACTIONS AU NIVEAU DU CTD DE
LARN pol II
Schematic representation of the polyadenylation
machinery. The majority of the components of the
mammalian and yeast polyadenylation complexes are
conserved, including all currently known factors
that function in the transcription connection.
For simplicity, only the mammalian nomenclature
is depicted the yeast names of factors that have
important roles in the events described here are
also indicated. (Note that although an apparent
human homolog of Ssu72 exists, it has not yet
been characterized functionally). , documented
proteinprotein interactions that help link
transcription and 3' processing (see text).
Polyadenylation signal sequences (upstream
AAUAAA, CA cleavage site consensus, and
downstream G/U-rich region) are boxed. CPSF,
cleavage-polyadenylation specificity factor
CstF, cleavage stimulation factor CFI and CFII,
cleavage factors I and II, respectively PAP,
poly(A) polymerase.
22LA TRANSCRIPTION EST REGULEE
23DES FACTEURS DE TRANSCRIPTION SPECIFIQUES
INTERAGISSENT AVEC LA MACHINERIE BASALE DE
TRANSCRIPTION
24ACTIVATION TRANSCRIPTIONNELLE PAR UNE HORMONE
25CHROMATINE ET TRANSCRIPTION
26LA CHROMATINE
Cest la structure macromoléculaire ADN-protéine
présente dans le noyau des cellules eucaryotes
Le nucléosome
147 pb dADN sont enroulés autour de loctamere
dhistone, formant deux tours
27LA CHROMATINE CONSTITUE UN CONTEXTE
TRANSCRIPTIONNEL REPRESSIF
28LE CODE HISTONE
Histone Modifications on the Nucleosome Core
ParticleThe nucleosome core particle showing 6
of the 8 core histone N-terminal tail domains and
2 C-terminal tails. Sites of posttranslational
modification are indicated by colored symbols
that are defined in the key (lower left) acK,
acetyl lysine meR, methyl arginine meK, methyl
lysine PS, phosphoryl serine and uK,
ubiquitinated lysine. Residue numbers are shown
for each modification. Note that H3 lysine 9 can
be either acetylated or methylated. The
C-terminal tail domains of one H2A molecule and
one H2B molecule are shown (dashed lines) with
sites of ubiquitination at H2A lysine 119 (most
common in mammals) and H2B lysine 123 (most
common in yeast). Modifications are shown on only
one of the two copies of histones H3 and H4 and
only one tail is shown for H2A and H2B. Sites
marked by green arrows are susceptible to cutting
by trypsin in intact nucleosomes. Note that the
cartoon is a compendium of data from various
organisms, some of which may lack particular
modifications (e.g., there is no H3meK9 in S.
cerevisiae). Adapted from Spotswood and Turner
(2002 ).
29LEPIGENETIQUE