Energy function: - PowerPoint PPT Presentation

About This Presentation
Title:

Energy function:

Description:

Attractors= local minima of energy function. Inverse states ... Associative Reward penalty algo ( ARP) Stochastic units: Prob( Si = 1) = hi = S wij vj ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 11
Provided by: utha
Category:
Tags: algo | energy | function

less

Transcript and Presenter's Notes

Title: Energy function:


1
  • Energy function
  • E(S1,,SN) - ½ S Wij Si Sj C (Wii P/N)
  • (Lyapunov function)
  • Attractors local minima of energy function.
  • Inverse states
  • Mixture states Spurious minima
  • Spin glass states

i j
2
Magnetic Systems
  • Ising Model Si spins
  • Field acting on spin i
  • hi wij Sj hext where wij is exchange
    interaction strength and wij wji
  • At low temperature Sj sgn(hi)

3
Effect of temperature Glauler
1, with probability g( hi)
Si
-1, with probability 1- g( hi)
1
Where g(h)
1 e 2bh
b 1/ ( K T)
K Boltzmans constant T temperature
4
Stochastic hopfield nets
1
Prob ( Si 1)

1 e 2bhi
b 1/T
5
Optimization with HNN
  • Weighted Matching Problem
  • N points, dij distance between i j
  • Link in pairs each point linked to exactly one
    other point and total length MINIMUM.
  • Encoding
  • N x N neurons, (nij ) 1lt i lt N
  • 1ltjlt N
  • activation of neuron ij
  • 1, if ? link from i to j
  • nij 0, otherwise.

6
  • Quantity to minimize
  • total length L S dij nij
  • 3. Constraints n 1, V i
  • 4. Energy function
  • Quantity to minimize constraint penalty
  • E (nij ) S dij nij (? /2) S (1- S nij)2

iltj
j
i
iltj
7
  • Reduce energy function to summation of quadratic
    and linear terms.
  • Coefficients of linear terms are thresholds of
    units.
  • Coefficients of quadratic terms are the weights
    between neurons.
  • E ( n ) (N?)/2 S (dij-? )nij ? S nij
    nik
  • So, weightij, kl - ?, if i,j k,l have
    index in common
  • f, otherwise.
  • Thresholds of node nij dij-?

Iltj
i,j,k
8
Traveling salesman problem (TSP)
  • NP- Complete
  • N x N nodes nij 1 iff city I is visited at j
    th stop in tour.
  • Minimize
  • L ½ S dij nia (nj,a1 nj,a-1 )
  • Constraints
  • S nia 1, V city i
  • S nia 1, V city a

i,j,a
a
i
9
  • Energy
  • e ½ S dij nia (nj,a1 nj,a-1 ) (? /2) S
    (1- S nia)2 S (1- S nia)2
  • ½ S dij nia nj,a1 ½ S dij nia nj,a-1 ?
    S nia nja ? S nia njb - ? S nia ? N
  • So, threshold - ? for each unit.
  • weights ? , between units on same row or
    column
  • dij , between units on different columns

a
i
i,j,a
i
a
i,j,a
i,j,a
i!j
a!b
i,a
10
Reinforcement Learning ( Learn with critic, not
teacher)
  • Associative Reward penalty algo ( ARP)
  • Stochastic units
  • Prob( Si 1)
  • hi S wij vj
  • vj activation of hidden unit or net inputs ?j
    themselves.
  • ?iµ Siµ , if ?µ 1 (reward)
  • -Siµ , if ?µ -1 (penalty)

1

1 e 2bhi
Write a Comment
User Comments (0)
About PowerShow.com