Title: Econ 240 C
1Econ 240 C
1
2Project II
3I. Work in Groups II. You will be graded based
on a PowerPoint presentation and a written
report. III.  Your report should have an
executive summary of one to one and a half pages
that summarizes your findings in words for a
non-technical reader. It should explain the
problem being examined from an economic
perspective, i.e. it should motivate interest in
the issue on the part of the reader. Your report
should explain how you are investigating the
issue, in simple language. It should explain why
you are approaching the problem in this
particular fashion. Your executive report should
explain the economic importance of your
findings.
4The technical details of your findings you can
attach as an appendix
Technical Appendix 1.     Table of
Contents 2.     Spreadsheet of data used and
sources or, if extensive, a subsample of the
data 3.     Describe the analytical time series
techniques you are using 4.     Show descriptive
statistics and histograms for the variables in
the study 5.     Use time series data for your
project show a plot of each variable against time
5Group A Group B Group C Tara
Copello Pungdalis Suos Calvin Yeung Zhimin
Zhou Micah Witt Andrew Cahill Andrea
Cardani Charles Rabkin Ashley Hedberg Jonathan
Hester Will Hippen Jesse Smith Evan
Nakano Thomas Bruister Darren Doi Eric
Laschinger Arnaud Piechaud Sarab Khalsa Yana
Ten Kyu-Sang Park Jong Duk Woo Group D Group
E Carl-Einar Thorner Jeffrey Ahlvin Robert
Connor Gleason Russell Ludwick Antung Anthony
Liu Aren Megerdichian Hamid Ghofrani Carrie
Koen Joonho Shin Anthony Kasza Ufook
Sahilliohlu Matthew Stevens
6Outline
- Exponential Smoothing
- Back of the envelope formula geometric
distributed lag L(t) ay(t-1) (1-a)L(t-1)
F(t) L(t) - ARIMA (p,d,q) (0,1,1) ?y(t) e(t)
(1-a)e(t-1) - Error correction L(t) L(t-1) ae(t)
- Intervention Analysis
7Part I Exponential Smoothing
- Exponential smoothing is a technique that is
useful for forecasting short time series where
there may not be enough observations to estimate
a Box-Jenkins model - Exponential smoothing can be understood from many
perspectives one perspective is a formula that
could be calculated by hand
8(No Transcript)
9Three Rates of Growth
10(No Transcript)
11Simple exponential smoothing
- Simple exponential smoothing, also known as
single exponential smoothing, is most appropriate
for a time series that is a random walk with
first order moving average error structure - The levels term, L(t), is a weighted average of
the observation lagged one, y(t-1) plus the
previous levels, L(t-1) - L(t) ay(t-1) (1-a)L(t-1)
12Single exponential smoothing
- The parameter a is chosen to minimize the sum of
squared errors where the error is the difference
between the observation and the levels term e(t)
y(t) L(t) - The forecast for period t1 is given by the
formula L(t1) ay(t) (1-a)L(t) - Example from John Heinke and Arthur Reitsch,
Business Forecasting, 6th Ed.
13observations Sales
1 500
2 350
3 250
4 400
5 450
6 350
7 200
8 300
9 350
10 200
11 150
12 400
13 550
14 350
15 250
16 550
17 550
18 400
19 350
20 600
21 750
22 500
23 400
24 650
14Single exponential smoothing
- For observation 1, set L(1) Sales(1) 500, as
an initial condition - As a trial value use a 0.1
- So L(2) 0.1Sales(1) 0.9Level(1) L(2)
0.1500 0.9500 500 - And L(3) 0.1Sales(2) 0.9Level(2) L(3)
0.1350 0.9500 485
15observations Sales Level
1 500 500
2 350 Â
3 250 Â
4 400 Â
5 450 Â
6 350 Â
7 200 Â
8 300 Â
9 350 Â
10 200 Â
11 150 Â
12 400 Â
13 550 Â
14 350 Â
15 250 Â
16 550 Â
17 550 Â
18 400 Â
19 350 Â
20 600 Â
21 750 Â
22 500 Â
23 400 Â
24 650 Â
16observations Sales Level
1 500 500
2 350 500
3 250 485
4 400 Â
5 450 Â
6 350 Â
7 200 Â
8 300 Â
9 350 Â
10 200 Â
11 150 Â
12 400 Â
13 550 Â
14 350 Â
15 250 Â
16 550 Â
17 550 Â
18 400 Â
19 350 Â
20 600 Â
21 750 Â
22 500 Â
23 400 Â
24 650 Â
a 0.1
17Single exponential smoothing
- So the formula can be used to calculate the rest
of the levels values, observation 4-24 - This can be set up on a spread-sheet
18observations Sales Level
1 500 500
2 350 500
3 250 485
4 400 461.5
5 450 455.4
6 350 454.8
7 200 444.3
8 300 419.9
9 350 407.9
10 200 402.1
11 150 381.9
12 400 358.7
13 550 362.8
14 350 381.6
15 250 378.4
16 550 365.6
17 550 384.0
18 400 400.6
19 350 400.5
20 600 395.5
21 750 415.9
22 500 449.3
23 400 454.4
24 650 449.0
a 0.1
19Single exponential smoothing
- The forecast for observation 25 is L(25)
0.1sales(24)0.9(24) - Forecast(25)Levels(25)0.16500.9449
- Forecast(25) 469.1
20(No Transcript)
21Single exponential distribution
- The errors can now be calculated e(t)
sales(t) levels(t)
22observations Sales Level error
1 500 500 0
2 350 500 -150
3 250 485 -235
4 400 461.5 -61.5
5 450 455.4 -5.35
6 350 454.8 -104.8
7 200 444.3 -244.3
8 300 419.9 -119.9
9 350 407.9 -57.9
10 200 402.1 -202.1
11 150 381.9 -231.9
12 400 358.7 41.3
13 550 362.8 187.2
14 350 381.6 -31.6
15 250 378.4 -128.4
16 550 365.6 184.4
17 550 384.0 166.0
18 400 400.6 -0.6
19 350 400.5 -50.5
20 600 395.5 204.5
21 750 415.9 334.1
22 500 449.3 50.7
23 400 454.4 -54.4
24 650 449.0 201.0
a 0.1
23observations Sales Level error error squared
1 500 500 0 0
2 350 500 -150 22500
3 250 485 -235 55225
4 400 461.5 -61.5 3782.25
5 450 455.4 -5.35 28.62
6 350 454.8 -104.8 10986.18
7 200 444.3 -244.3 59698.86
8 300 419.9 -119.9 14376.05
9 350 407.9 -57.9 3353.58
10 200 402.1 -202.1 40852.14
11 150 381.9 -231.9 53780.95
12 400 358.7 41.3 1704.33
13 550 362.8 187.2 35027.05
14 350 381.6 -31.6 996.06
15 250 378.4 -128.4 16487.67
16 550 365.6 184.4 34016.68
17 550 384.0 166.0 27553.51
18 400 400.6 -0.6 0.37
19 350 400.5 -50.5 2554.91
20 600 395.5 204.5 41823.74
21 750 415.9 334.1 111594.53
22 500 449.3 50.7 2565.62
23 400 454.4 -54.4 2960.80
24 650 449.0 201.0 40412.28
a 0.1
24observations Sales Level error error squared  Â
1 500 500 0 0 Â Â
2 350 500 -150 22500 Â Â
3 250 485 -235 55225 Â Â
4 400 461.5 -61.5 3782.25 Â Â
5 450 455.4 -5.35 28.62 Â Â
6 350 454.8 -104.8 10986.18 Â Â
7 200 444.3 -244.3 59698.86 Â Â
8 300 419.9 -119.9 14376.05 Â Â
9 350 407.9 -57.9 3353.58 Â Â
10 200 402.1 -202.1 40852.14 Â Â
11 150 381.9 -231.9 53780.95 Â Â
12 400 358.7 41.3 1704.33 Â Â
13 550 362.8 187.2 35027.05 Â Â
14 350 381.6 -31.6 996.06 Â Â
15 250 378.4 -128.4 16487.67 Â Â
16 550 365.6 184.4 34016.68 Â Â
17 550 384.0 166.0 27553.51 Â Â
18 400 400.6 -0.6 0.37 Â Â
19 350 400.5 -50.5 2554.91 Â Â
20 600 395.5 204.5 41823.74 Â Â
21 750 415.9 334.1 111594.53 Â Â
22 500 449.3 50.7 2565.62 Â Â
23 400 454.4 -54.4 2960.80 Â Â
24 650 449.0 201.0 40412.28 Â Â
     sum sq res 582281.2
a 0.1
25Single exponential smoothing
- For a 0.1, the sum of squared errors is S
(errors)2 582,281.2 - A grid search can be conducted for the parameter
value a, to find the value between 0 and 1 that
minimizes the sum of squared errors - The calculations of levels, L(t), and errors,
e(t) sales(t) L(t) for a 0.6
26observations Sales Levels
1 500 500
2 350 500
3 250 410
4 400 314
5 450 365.6
6 350 416.2
7 200 376.5
8 300 270.6
9 350 288.2
10 200 325.3
11 150 250.1
12 400 190.0
13 550 316.0
14 350 456.4
15 250 392.6
16 550 307.0
17 550 452.8
18 400 511.1
19 350 444.4
20 600 387.8
21 750 515.1
22 500 656.0
23 400 562.4
24 650 465.0
a 0.6
27Single exponential smoothing
- Forecast(25) Levels(25) 0.6sales(24)
0.4levels(24) 0.6650 0.4465 776
28observations Sales Levels error error square  Â
1 500 500 0 0 Â Â
2 350 500 -150 22500 Â Â
3 250 410 -160 25600 Â Â
4 400 314 86 7396 Â Â
5 450 365.6 84.4 7123.36 Â Â
6 350 416.2 -66.2 4387.74 Â Â
7 200 376.5 -176.5 31150.84 Â Â
8 300 270.6 29.4 864.45 Â Â
9 350 288.2 61.8 3814.38 Â Â
10 200 325.3 -125.3 15699.02 Â Â
11 150 250.1 -100.1 10023.67 Â Â
12 400 190.0 210.0 44080.13 Â Â
13 550 316.0 234.0 54747.14 Â Â
14 350 456.4 -106.4 11322.57 Â Â
15 250 392.6 -142.6 20324.22 Â Â
16 550 307.0 243.0 59036.75 Â Â
17 550 452.8 97.2 9445.88 Â Â
18 400 511.1 -111.1 12348.55 Â Â
19 350 444.4 -94.4 8920.73 Â Â
20 600 387.8 212.2 45037.39 Â Â
21 750 515.1 234.9 55172.40 Â Â
22 500 656.0 -156.0 24349.97 Â Â
23 400 562.4 -162.4 26379.58 Â Â
24 650 465.0 185.0 34237.15 Â Â
     Sum of Sq Res 533961.9
a 0.6
29Single exponential smoothing
30(No Transcript)
31Single Exponential Smoothing
- EVIEWS Algorithmic search for the smoothing
parameter a - In EVIEWS, select time series sales(t), and open
- In the sales window, go to the PROCS menu and
select exponential smoothing - Select single
- the best parameter a 0.26 with sum of squared
errors 472982.1 and root mean square error
140.4 (472982.1/24)1/2 - The forecast, or end of period levels mean 532.4
32(No Transcript)
33(No Transcript)
34Forecast L(25) 0.26Sales(24) 0.74L(24)
532.4 0.26650 0.74491.07 532.4
35(No Transcript)
36Part II. Three Perspectives on Single Exponential
Smoothing
- The formula perspective
- L(t) ay(t-1) (1 - a)L(t-1)
- e(t) y(t) - L(t)
- The Box-Jenkins Perspective
- The Updating Forecasts Perspective
37Box Jenkins Perspective
- Use the error equation to substitute for L(t) in
the formula, L(t) ay(t-1) (1 - a)L(t-1) - L(t) y(t) - e(t)
- y(t) - e(t) ay(t-1) (1 - a)y(t-1) -
e(t-1) y(t) e(t) y(t-1) - (1-a)e(t-1) - or Dy(t) y(t) - y(t-1) e(t) - (1-a) e(t-1)
- So y(t) is a random walk plus MAONE noise, i.e
y(t) is a (0,1,1) process where (p,d,q) are the
orders of AR, differencing, and MA.
38Box-Jenkins Perspective
- In Lab Eight, we will apply simple exponential
smoothing to retail sales, a process you used for
forecasting trend in Lab 3, and which can be
modeled as (0,1,1).
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44Box-Jenkins Perspective
- If the smoothing parameter approaches one, then
y(t) is a random walk - Dy(t) y(t) - y(t-1) e(t) - (1-a) e(t-1)
- if a 1, then Dy(t) y(t) - y(t-1) e(t)
- In Lab Eight, we will use the price of gold to
make this point
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49Box-Jenkins Perspective
- The levels or forecast, L(t), is a geometric
distributed lag of past observations of the
series, y(t), hence the name exponential
smoothing - L(t) ay(t-1) (1 - a)L(t-1)
- L(t) ay(t-1) (1 - a)ZL(t)
- L(t) - (1 - a)ZL(t) ay(t-1)
- 1 - (1-a)Z L(t) ay(t-1)
- L(t) 1/ 1 - (1-a)Z ay(t-1)
- L(t) 1 (1-a)Z (1-a)2 Z2 ay(t-1)
- L(t) ay(t-1) (1-a)ay(t-2) (1-a)2ay(t-3)
.
50(No Transcript)
51The Updating Forecasts Perspective
- Use the error equation to substitute for y(t) in
the formula, L(t) ay(t-1) (1 - a)L(t-1) - y(t) L(t) e(t)
- L(t) aL(t-1) e(t-1) (1 - a)L(t-1)
- So L(t) L(t-1) ae(t-1),
- i.e. the forecast for period t is equal to the
forecast for period t-1 plus a fraction a of the
forecast error from period t-1.
52Part III. Double Exponential Smoothing
- With double exponential smoothing, one estimates
a trend term, R(t), as well as a levels term,
L(t), so it is possible to forecast, f(t), out
more than one period - f(tk) L(t) kR(t), kgt1
- L(t) ay(t) (1-a)L(t-1) R(t-1)
- R(t) bL(t) - L(t-1) (1-b)R(t-1)
- so the trend, R(t), is a geometric distributed
lag of the change in levels, DL(t)
53Part III. Double Exponential Smoothing
- If the smoothing parameters a b, then we have
double exponential smoothing - If the smoothing parameters are different, then
it is the simplest version of Holt-Winters
smoothing
54Part III. Double Exponential Smoothing
- Holt- Winters can also be used to forecast
seasonal time series, e.g. monthly - f(tk) L(t) kR(t) S(tk-12) kgt1
- L(t) ay(t)-S(t-12) (1-a)L(t-1) R(t-1)
- R(t) bL(t) - L(t-1) (1-b)R(t-1)
- S(t) cy(t) - L(t) (1-c)S(t-12)
55Part V. Intervention Analysis
56Intervention Analysis
- The approach to intervention analysis parallels
Box-Jenkins in that the actual estimation is
conducted after pre-whitening, to the extent that
non-stationarity such as trend and seasonality
are removed - Example preview of Lab 8
57Telephone Directory Assistance
- A telephone company was receiving increased
demand for free directory assistance, i.e.
subscribers asking operators to look up numbers.
This was increasing costs and the company changed
policy, providing a number of free assisted calls
to subscribers per month, but charging a price
per call after that number.
58Telephone Directory Assistance
- This policy change occurred at a known time,
March 1974 - The time series is for calls with directory
assistance per month - Did the policy change make a difference?
59(No Transcript)
60The simple-minded approach
61(No Transcript)
62(No Transcript)
63(No Transcript)
64Principle
- The event may cause a change, and affect time
series characteristics - Consequently, consider the pre-event period,
January 1962 through February 1974, the event
March 1974, and the post-event period, April 1974
through December 1976 - First difference and then seasonally difference
the entire series
65Analysis Entire Differenced Series
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70Analysis Pre-Event Differences
71(No Transcript)
72(No Transcript)
73(No Transcript)
74So Seasonal Nonstationarity
- It was masked in the entire sample by the
variance caused by the difference from the event - The seasonality was revealed in the pre-event
differenced series
75(No Transcript)
76Pre-Event Analysis
- Seasonally differenced, differenced series
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81Pre-Event Box-Jenkins Model
- 1-Z12 1 ZAssist(t) WN(t) aWN(t-12)
82(No Transcript)
83(No Transcript)
84(No Transcript)
85Modeling the Event
86Entire Series
- Assist and Step
- Dassist and Dstep
- Sddast sddstep
87(No Transcript)
88(No Transcript)
89(No Transcript)
90Model of Series and Event
- Pre-Event Model 1-Z12 1 ZAssist(t) WN(t)
aWN(t-12) - In Levels Plus Event Assist(t)WN(t)
aWN(t-12)/1-Z1-Z12 (-b)step - Estimate 1-Z12 1 ZAssist(t) WN(t)
aWN(t-12) (-b) 1-Z12 1 Zstep
91(No Transcript)
92(No Transcript)
93Policy Change Effect
- Simple decrease of 387 (thousand) calls per
month - Intervention model decrease of 397 with a
standard error of 22
94(No Transcript)
95Stochastic Trends Random Walks with Drift
- We have discussed earlier in the course how to
model the Total Return to the Standard and Poors
500 Index - One possibility is this time series could be a
random walk around a deterministic trend - Sp500(t) expa dt WN(t)/1-Z
- And taking logarithms,
96Stochastic Trends Random Walks with Drift
- Lnsp500(t) a dt WN(t)/1-Z
- Lnsp500(t) a dt WN(t)/1-Z
- Multiplying through by the difference operator, D
1-Z - 1-ZLnsp500(t) a dt WN(t-1)
- LnSp500(t) a dt - LnSp500(t-1) a
d(t-1) WN(t) - D Lnsp500(t) d WN(t)
97- So the fractional change in the total return to
the SP 500 is drift, d, plus white noise - More generally,
- y(t) a dt 1/1-ZWN(t)
- y(t) a dt 1/1-ZWN(t)
- y(t) a dt- y(t-1) a d(t-1) WN(t)
- y(t) a dt y(t-1) a d(t-1) WN(t)
- Versus the possibility of an ARONE
98- y(t) a dtby(t-1)ad(t-1)WN(t)
- Y(t) a dt by(t-1)ad(t-1)WN(t)
- Or y(t) a(1-b)bdd(1-b)tby(t-1)
wn(t) - Subtracting y(t-1) from both sides
- D y(t) a(1-b)bd d(1-b)t
(b-1)y(t-1) wn(t) - So the coefficient on y(t-1) is once again
interpreted as b-1, and we can test the null that
this is zero against the alternative it is
significantly negative. Note that we specify the
equation with both a constant, - a(1-b)bd and a trend d(1-b)t
99Part IV. Dickey Fuller Tests Trend
100Example
101(No Transcript)
102(No Transcript)
103(No Transcript)
104(No Transcript)