Title: Antoine%20Georges
1Mean field theories of quantum spin glasses
Antoine Georges Olivier Parcollet Nick Read Subir
Sachdev Jinwu Ye
Talk online Sachdev
2Classical Sherrington-Kirkpatrick model
Jij a Gaussian random variable with zero mean
3Two routes to quantization
A. Quantum rotor model
n1 Ising model is a transverse field g
g
Spectrum at Jij0
n3 randomly coupled spin dimers
g
Spectrum at Jij0
4Two routes to quantization
B. Heisenberg spins
Spectrum at Jij0
(2S1)-fold degeneracy
Generalize model to SU(N) spins and explore phase
diagram in N, S plane
5Outline
- Insulating quantum rotors.
- Insulating Heisenberg spins
- DMFT of a random t-J model
- Metallic spin glasses DMFT of a random Kondo
lattice
6 A. Insulating quantum rotors
7A. Quantum rotor model
Jij a Gaussian random variable with zero mean
8Local dynamic spin susceptibility
T0 phases
Spin glass
Paramagnet
Specific heat C T (?)
g
D.A. Huse and J. Miller, Phys. Rev. Lett. 70,
3147 (1993). J. Ye, S. Sachdev, and N. Read,
Phys. Rev. Lett. 70, 4011 (1993). N. Read, S.
Sachdev, and J. Ye, Phys. Rev. B 52, 384
(1995). A. Georges, O. Parcollet, and S. Sachdev,
Phys. Rev. B 63, 134406 (2001).
9T gt 0 phase diagram
gc
g
J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett.
70, 4011 (1993). N. Read, S. Sachdev, and J. Ye,
Phys. Rev. B 52, 384 (1995).
10 B. Insulating Heisenberg spins
11B. Heisenberg spin glass
Jij a Gaussian random variable with zero mean
S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339
(1993).
12T0 phase diagram
S
Spin glass order
Specific heat C T (C T2 ?)
N
S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339
(1993). A. Georges, O. Parcollet, and S. Sachdev,
Phys. Rev. Lett. 85, 840 (2000). A. Camjayi and
M. J. Rozenberg, Phys. Rev. Lett. 90, 217202
(2003).
13Quantum critical phase is described by
fractionalized S1/2 neutral spinon excitations
Spinon spectral density
w
S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339
(1993).
14T gt 0 phase diagram
S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339
(1993). A. Georges, O. Parcollet, and S. Sachdev,
Phys. Rev. Lett. 85, 840 (2000). A. Camjayi and
M. J. Rozenberg, Phys. Rev. Lett. 90, 217202
(2003).
15 C. Doping the quantum critical spin liquid
16C. DMFT of a random t-J model
Jij a Gaussian random variable with zero mean
O. Parcollet and A. Georges, Phys. Rev. B 59,
5341 (1999).
17 carrier density
O. Parcollet and A. Georges, Phys. Rev. B 59,
5341 (1999).
18Physical consequences of quantum criticality
1. Electron spectral function (photoemission)
Momentum resolved spectral density
O. Parcollet and A. Georges, Phys. Rev. B 59,
5341 (1999).
19Physical consequences of quantum criticality
2. d.c Resistivity
O. Parcollet and A. Georges, Phys. Rev. B 59,
5341 (1999).
20Physical consequences of quantum criticality
3. NMR 1/T1 relaxation rate
O. Parcollet and A. Georges, Phys. Rev. B 59,
5341 (1999).
21Physical consequences of quantum criticality
4. Optical conductivity
O. Parcollet and A. Georges, Phys. Rev. B 59,
5341 (1999).
22Phenomenological phase diagram for cuprates
O. Parcollet and A. Georges, Phys. Rev. B 59,
5341 (1999).
23 D. Metallic spin glasses
24C. DMFT of a random Kondo lattice model
Jij a Gaussian random variable with zero mean
S. Sachdev, N. Read, and R. Oppermann, Phys. Rev.
B 52, 10286 (1995). A. M. Sengupta and A.
Georges, Phys. Rev. B 52, 10295 (1995).
25JK
S. Sachdev, N. Read, and R. Oppermann, Phys. Rev.
B 52, 10286 (1995). A. M. Sengupta and A.
Georges, Phys. Rev. B 52, 10295 (1995).
26Outlook
- Spin glass order is an attractive candidate for
a quantum critical point in the cuprates, on both
theoretical and experimental grounds. (Impurities
break the translational symmetry associated with
charge-ordered states, and the Imry-Ma argument
then prohibits a quantum critical point
associated with charge order in the presence of
randomness in two dimensions) - A simple mean-field theory of a doped Heisenberg
spin glass naturally reproduces all the
marginal phenomenology. - Needed better theory of fluctuations in low
dimensions