Kein Folientitel - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Kein Folientitel

Description:

Free-standing strictures: 1)micro bridges; 2) cantilever ... 4 micromachined cantilever on Si-subtrate are mounted flip-chip to control the slotline state ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 34
Provided by: drpete78
Category:

less

Transcript and Presenter's Notes

Title: Kein Folientitel


1

MEMS Tuneable Dielectric Resonator for Mobile
Communication Systems
G. Panaitov, R. Ott and N. Klein Research Center
Jülich, Germany
2
MEMS Tuneable Dielectric Resonator
  • Outline
  • Principle of Cellular Mobile Communication
  • General
  • Approach (MEMS, Slotline)
  • Experimental Setup
  • Results
  • Summary

3
Principle of Cellular Mobile Communication
GSM Mobile System 960-935MHz 910-895MHz
GSM Network
MS mobile station
SC switching center
BS base station
4
Principle of Cellular Mobile Communication
GSM Mobile System 960-935MHz 910-895MHz
  • MS mobile station
  • transmitter
  • receiver
  • control circuitry

Receiv. Chnl. 25kHz
Transm. Chnl. 25kHz
Disadvantages - very limited number of channels
- limited propagation
5
Principle of Cellular Mobile Communication
GSM Mobile System Base Station
  • Communication via BS
  • MS1 BS MS2
  • BS transmitter/receiver, towers
  • effective retransmission
  • BS coverage area hexagon
  • limited to 30-40km

BS base station
30 40 km
6
Principle of Cellular Mobile Communication
GSM Mobile System Cellular Network
Series of individual cells build a Cellular
network covers the GSM area
7
Principle of Cellular Mobile Communication
GSM Mobile System Cellular Network
  • Each NC with the neighbours
  • cells form a kind of
  • Cluster configuration
  • Frequency distribution
  • every cluster use the complete set of
  • available frequencies (1000)
  • Total Number of available channels
  • Nchnl 1000Nclst

8
Principle of Cellular Mobile Communication
GSM Mobile System Switching Center
  • BS SC connection
  • multichannel radio or fiber-optic cables
  • Flexible frequency use
  • - looks for the best frequency
  • connection between MS
  • - change f-channel if MS moves
  • out of cell while the call in
    progress
  • - change of f-channel at a noise
  • disturbance

Switching center
9
Principle of Cellular Mobile Communication
GSM Mobile System Switching Center
  • SC and BS require f-selective
  • components (filters, resonators)
  • with tunagle resonance frequency
  • 3G UMTS (universal mobile
  • telecommunication system)
  • - 1920-1980MHz uplink
  • - 2110-2170MHz downlink
  • - high data rate (up170kb/s mobile)
  • require faster tuning time (ms)

Switching center
10
Tunable UMTS Filters based on dielectric
resonators (TUF)
Project goal Development of the tuneable
dielectric resonator at about 2 GHz (large tuning
df, high Q)
  • Techniques Partners
  • Ferroectric based tuning (South Bank University
    (London)
  • Ferrite and ferroelectric/paraelectric (Warsaw
    University of Technology)
  • Dielectric ceramic development (Institute Josef
    Stefan (Ljubljana), Filtronic Comtek (UK) Ltd)
  • MEMS (Micro Electro-Mechanical Systems) tuneable
    resonator (FZJ, Jülich)
  • Device Examples (Ericson)
  • Tuneable reject filter (to remove narrow band
    interferer)
  • t ms low load. Q gt 3000 at 2 GHz df
    up 60 MHz,
  • Channel filter, 5 MHz wide
  • t seconds medium load. Q gt 10000 at
    2 GHz df up 60 MHz

11
MEMS micro-electromechanical switch
  • Free-standing strictures 1)micro bridges 2)
    cantilever
  • Actuation 1) Electrostatic 2) Bimetal 3)
    Piezo-electric

Microstrip 1
Microstrip 2
12
MEMS micro-electromechanical switch
Technology 1) sacrificial layer
2) Si-macromachining, anisotropic
etching (RWTH, Aachen)
13
Microwave Slotlines
Slotline planar microwave resonator
  • Narrow slot etched in the metallisation
  • on one side of dielectric substrate
  • Resonanse parameters
  • Z, f, l, Q depends on h, w, er
  • for thick substrate h gtgt w

h
er
w
14
Microwave Slotlines
Short End Slotline Microwave Resonator
  • Resonator parameters
  • f, l, Q depends on
  • l-slotline length
  • State of the free end of slotline
  • closed/open

l
h
er
w
15
Microwave Slotlines
Short End Slotline Transmission Line Theory
Z0 - characteristic impedance b 2p/l -
propagation constant Z1, Z2 - slotline end
impedances
16
MEMS tuneable dielectric resonator
Tuning Concept
l
  • 4 radial slots
  • MEMS open quarter wave resonator (ll/4)
  • MEMS closed half wave resonator (ll/2)
  • DR TE01? ,mode coupled to slotline if fDR
    fquarterwave

17
MEMS tuneable dielectric resonator
Simulation with CST Microwave Studio E-field
  • MEMS open
  • strong intermode coupling
  • f 1.878 GHz Q6,700
  • MEMS closed
  • weak intermode coupling
  • f 1.945 GHz Q21,500

tuning range 67 MHz (3)
18
MEMS tuneable dielectric resonator
Simulation E-field of the single slotline
MEMS open Quarterwave resonator
MEMS closed Halfwave resonator
19
MEMS tuneable dielectric resonator
Piezo Actuator based Experimental Setup
  • Actuator parameters
  • size 32 x 7.8 x 1.2 mm3
  • max deflection 325µm
  • voltage 100V or 0-200V
  • switching time 1,5ms
  • force at the end 2,25N

20
Piezo Actuators
Piezo Effect
(e.g.
PZT)
  • dL Edij L0 dij V single layer
  • small dij 0.5 µm/kV
  • dL n dij V multilayer
  • max displacement up to 5µm

L0dL
V
Bimorph Piezo Actuator (Benders)


  • similar to bimetal thermoexpan.
  • perpendicular piezo effect
  • Expansion contraction layers
  • movement up to 1000 µm
  • up to 109 cycles

21
MEMS tuneable dielectric resonator
Piezo actuator assembly
  • Actuator parameters
  • size 32 x 7.8 x 1.2 mm3
  • max deflection 325µm
  • voltage 100V or 0-200V
  • switching time 1,5ms
  • force at the end 2,25N

Thin film slotlines 19x1x0.001mm3
22
MEMS tuneable dielectric resonator
Experimental results Bulk slotlines
19x0.4x0.5mm3
Tuning Parameters
Piezo actuator assembly
Bulk slotlines 19x0.4x0.5mm3
  • Variation of frequency mean discret value
    df 3.5MHz/switch
  • No strong intermodular coupling betveen
    slotlines
  • digital tuning possible

23
MEMS tuneable dielectric resonator
Digital frequency tuning
N - number of tuning elements (slots) df -
frequency step (digitalisation unit) dFn n
df , 0 lt n lt N
dFn n1df1 n2df2 df2 kdf1

df0.2MHz N25 Tuning
5x0.2MHz
df10.2MHz df21MHz N8
24
MEMS tuneable dielectric resonator
Experimental results digital tuning
  • Optimisation of the frequency step
  • slotline width, w
  • slotline length, l
  • DR/Slotline distance, h

25
MEMS tuneable dielectric resonator
Experimental results Bulk slotlines 20x1x0.5mm3
Tuning Parameters
Piezo actuator assembly
Bulk slotlines 20x1x0.5mm3
df 7 MHz/switch Tuning df 14MHz Q
6000 - 10000
26
MEMS tuneable dielectric resonator
Exp. Results Frequency step as the function of
slotline length
Bulk slots width1mm thickness0.5mm h
2mm
Analyse of df(l) dependence df
0.2exp(l/3.43) 0.12
27
MEMS tuneable dielectric resonator
Exp. results Frequency step, df as the function
of the h-distance between DR and slots (w0.4 and
1mm)
28
MEMS tuneable dielectric resonator
Experimental results digital tuning df
0.25MHz
Tuning Parameters Bulk slotlines 19x0.4x0.5mm3
DR/Slots distance h12mm
Frequency step, df, versus h
df 0.26MHz/switch df 1.06MHz Q 25000
29
MEMS tuneable dielectric resonator
  • Conclusion
  • Novel high Q fast digital tuning concept for DR
    developed
  • Concept was proved by piezo-bimorph actuator
    design
  • Wide range digital tuning with 7 and 3.5MHz
    steps can be realised at high Qs up to 10000
  • Optimisation design, coupling parameters,
    stability etc.

30
MEMS tuneable dielectric resonator
Experimental results optimisation of actuating
voltage
Frequency and Q-data versus Piezo/Slot Distance
Strong capacitive coupling
Weak capacitive coupling
31
Cylindrical dielectric resonator
TE01d mode
a
L
a radius L length (height) er dielectric
constant f resonant frequency
32
MEMS tuneable dielectric resonator
Micromachined MEMS cantilever in flip-chip design
4 micromachined cantilever on Si-subtrate are
mounted flip-chip to control the slotline state
Resonator assambly with MEMS cantilever
33
MEMS tuneable dielectric resonator
Idea of the approach
  • compact
  • low power consumption
  • low weight
  • fast tuning time t ms
Write a Comment
User Comments (0)
About PowerShow.com