Title: Astroparticle yield in radio galaxies jets and hot spots
1Astroparticle yield in radio galaxies jets and
hot spots
- A.Marcowith (C.E.S.R. Toulouse France)
- F.Casse (F.O.M. Rijnhuizen, the Netherlands
A.P.C. Paris, France)
2Outline
- Multi-? high spatial resolution observations.
- Methodology MHD-SDE code.
- Jets hot spots
- - Particle transport in complex flows
- - Microscopic turbulence
- - Astroparticle yield
- Future works.
3Multi-? observations
- Multi-wavelength spectra
- High resolution maps (VLBI, HST, Chandra
XMM-Newton). - ? Spectral and spatial analysis
- Supernova remnants (van der Swaluw Achterberg
2004) - Massive star formation sites (poster on
Super-bubbles) - Active Galactic Nuclei jets and hot spots (this
talk)
4Radio-X-ray jets
IC/CMB ?
synchrotron
Sambruna et al. 2002
1 5.4 kpc
5FRII hot spots
Hot spot A
Wilson et al. 2000
core
jets
Chandra
Cygnus A (VLA 5 GHz )
SSC
FR Fanaroff Riley radio-galaxies FRII are the
most powerful RG.
6Astrophysical interests
- Radiative processes in high energy sources
- - Origin of the X-ray radiation in jets and
hot spots - Relativistic particle production, acceleration
and propagation - - Cosmic-ray physics.
- Constraints on transport processes
- - Turbulence (fluid microscopic), magnetic
field configuration, link to macroscopic
structures.
Need for multi-scale computational methods
linking large MHD scale to kinetic transport ...
7Multi-scale simulation
- (3Dtime) MHD kinetic Eq. radiative
processes. - MHD Versatile Advection Code (www.physics.uu.nl/
toth) - - 3D conservative schemes non-relativistic
flows - Kinetic equations Diffusive approximation
- - Stochastic differential equations ?
Diffusion-convection equation - Radiative processes synchrotron/IC losses (e-),
hadronic interaction (p-p, p-? gamma-ray
neutrino)
8Diffusive shock acceleration
- Constraints on ?tsde and ?
?Xadv
upstream
downstream
?Xdiff
?Xshock
ideal sharp discontinuity
Numerical smoothing over few grid cells
Necessary condition to compute the shock process
correctly ?Xadv ( Vflow ?tsde) lt ?Xshock lt
?Xdiff ( v2 ? ?tsde) (Kruells Achterberg 1994
N Dim. extension Casse Marcowith 2003) ?
?tsde and ?min
9SDEs
- 3D axisymetric MHD ? Vflow, B, tMHD.
- Microscopic turbulence model ? diffusion
coefficients ?. - Sum number of particles N(p,t) in a given (r,z) ?
distribution function at tMHD.
10Extragalactic jets hot spots
- FRI jets (Casse Marcowith AA 2003)
- Complex shock structures.
- Multiple-shock acceleration.
- Hot spots (Casse Marcowith PRD 2004 sub.)
- Constraints on turbulence regime.
- Magnetic field configuration.
- Astroparticle yield (gamma-rays, high energy
neutrinos, cosmic-rays).
11Complex shock structure
Kelvin-Helmoltz instability ? internal shocks in
jet T1 (weak curved shock lt r gt 2.76)
lt T2 (strong planar shock lt r gt 4)
Stationary sol. F(p) ? p-3r/(r-1)
12Hot spot simulation
Poloidal MF
AMR-VAC (Keppens 2004)
13Astroparticle yield in HS
Cygnus A Electrons
Cygnus A protons
At the terminal shock
Over the HS
synchrotron
zoom
Proton Escaping the HS
At the terminal shock
Kolmogorov turbulence poloidal MF Ecr max
fixed by escape losses ? transport
Ecrmax 5 x 1016 eV
143C273A electrons
3C273A protons
At the terminal shock
Over the whole HS
At the terminal shock
synchrotron
zoom
Escaping protons
Kolmogorov turbulence toroidal MF
Ecrmax 7 x 1019 eV
15E-2 spectrum
Secondaries from 3C273A
- Neutrinos flux on Earth 2.3 x 10-14 GeV / cm2 s
sr ( 5 orders of magnitude under ANTARES
sensitivity) - p-p gamma-ray flux on Earth 4.7 x 10-14 GeV /
cm2 s sr ( 3 orders of magnitude under GLAST
sensitivity)
16Conclusions
- Methodology
- Multi-? high resolution observations ?
multi-scale simulations to handle - gt Macroscopic structures.
- gt Microscopic physics.
- Mesoscopic simulation schemes MHD-EDS
- Easy to implement, able to handle complex
flows configurations with shocks. - - Statistics, test-particle approximation.
- Other methods do exist (T. Downes et al. 2002,
T. Jones et al. 1999, A. Micono et al. 1999)
17- Astrophysics Jets Hot spots
- Investigate complex shock structure in jets and
hot spots - Constraints on acceleration mechanisms or
turbulence - Multi-? spectra astroparticle
- 3C273A (transverse shock acceleration high
synchrotron cut-off 1014 Hz)
18Future works
- Full time-dependent simulation for FRI jets
- X-ray dominated synchrotron astroparticle
production (FRI some hot spots) - Multi-wavelength maps
- Other objects (SNr,SNr-cloud interaction,
colliding stellar winds...) - Extension to relativistic flows (FRII
radio-galaxies) - Make time dependent SDEs available for the
community and insert an SDE routine in VAC and
AMR-VAC.
19Multiple shock effects
Test particle approximation theory p F(p) ?
p-(tacc/tesc) Multiple shock with no escape ?
flat p F(p) distribution
Synchrotron losses
- Spectral energy distribution without synchrotron
losses for - Const. Diff. Coeff.
- Kolmogorov with ? turbulence level
20MHD turbulence in HS
- Test // and ? shocks (poloidal or toroidal MF
dominated HS) - Test different transport theory
- Isotropic Kolmogorov, Kraichnan, Bohm.
- Anisotropic Goldreich-Sridhar
- Main conclusions
- Highest CR energies for Kolmogorov with toroidal
MF. - HS with high synchrotron cut-off (optical 1014
Hz) are prone to be efficient astroparticle
(secondaries from p-p and p-? interaction Ep
(E?/1eV) gt 6.6 1016 eV) sources. - Best candidate in Meisenheimer et al. 1989
1997 list - 3C273A (low radio power, high synchrotron
cut-off, CR accelerator Ecrmax 7 x 1019 eV). - Cygnus A (powerful radio source, low synchrotron
cut-off 1012 Hz, not expected to be a strong
astroparticle source.
21- Astrophysics Jets Hot spots
- Hard spectra produced by multiple shocks
acceleration (alternative radiative model) - Oblique-perpendicular shocks with Kolmogorov
type turbulence favored to produce high energy
CRs - Weaker radio but optical Hot spots are expected
to be astroparticle sources - - Good candidate 3C273A (transverse shock
acceleration high synchrotron cut-off 1014
Hz)