Une analyse simple dpidmies sur les graphes alatoires - PowerPoint PPT Presentation

About This Presentation
Title:

Une analyse simple dpidmies sur les graphes alatoires

Description:

Bond percolation: immortal balls. A. B. A. Death processes ... Death process with immortal balls: Death Processes for white balls. For the white A and B balls: ... – PowerPoint PPT presentation

Number of Views:22
Avg rating:3.0/5.0
Slides: 19
Provided by: marcle4
Category:

less

Transcript and Presenter's Notes

Title: Une analyse simple dpidmies sur les graphes alatoires


1
Une analyse simple dépidémies sur les graphes
aléatoires
  • Marc Lelarge (INRIA-ENS)
  • ALEA 2009.

2
Diluted Random Graphs
Molloy-Reed (95)
3
Percolated Threshold Model
  • Bond percolation randomly delete each edge with
    probability 1-p.
  • Bootstrap percolation with threshold K(d) Seed
    of active nodes, S.
  • Deterministic dynamic set if

4
Branching Process Approximation
  • Local structure of G random tree
  • Recursive Distributional Equation

5
Solving the RDE
6
Algorithm
  • Remove vertices S from graph G
  • Recursively remove vertices i such that
  • All removed vertices are active and all vertices
    left are inactive.
  • Variations
  • remove edges instead of vertices.
  • remove half-edges of type B.

7
Configuration Model
  • Vertices bins and half-edges balls
  • Bollobás (80)

8
Site percolation
Fountoulakis (07) Janson (09)
9
Coupling
  • Type A if
  • Janson-Luczak (07)

A
B
10
Deletion in continuous time
  • Each white ball has an exponential life time.

A
B
11
Percolated threshold model
  • Bond percolation immortal balls

A
A
B
12
Death processes
  • Rate 1 death process (Glivenko-Cantelli)
  • Death process with immortal balls

13
Death Processes for white balls
  • For the white A and B balls
  • For the white A balls

14
Epidemic Spread
  • largest solution in 0,1 of
  • If , then final outbreak
  • If , and not local minimum, outbreak

15
Applications
  • K0, pgt0, agt0 site bond percolation.
  • If a-gt0, giant component
  • Bootstrap percolation, p1, K(d)k.
  • Regular graphs (Balogh Pittel 07)
  • K-core for Erd?s-Rényi (Pittel, Spencer, Wormald
    96)

16
Phase transition
17
Phase transition
  • Cascade condition
  • Contagion threshold
  • K(d)qd (Watts 02)

18
Conclusion
  • Percolated threshold model (bond-bootstrap
    percolation)
  • Analysis on a diluted random graph (coupling)
  • Recover results giant component, sudden
    emergence of the k-core
  • New results cascade condition, vaccination
    strategies
Write a Comment
User Comments (0)
About PowerShow.com