Title: Step 1: Formulate the Problem
1Step 1 Formulate the Problem Decision
Variables Objective Function (O.
F.) Constraints (S. T.) Sign
Constraints (URS) Step 2 Create the
Standard Form of LP Constraints ( s ,
- e , a ) Variables gt 0 Step 3
Create a Simplex Tableau Row 0 a version
of O.F. Row 1- .. constraint with
equality Variable gt 0 Initial bfs
IE 416, Chap 41, June 1999
2RMC Inc. Problem, Summary
Mixture in
Product Raw Material Available
Fuel Solvent Material 1
20 tons 2/5
1/2 Material 2 5 tons
- 1/5 Material 3
21 tons 3/5 3/10
Profit /ton
40 30 Source An
Introduction to Management Science By Anderson,
Sweeney, Williams
IE 416, Chap 4, May 99
3RMC Inc. Problem, Formulation X1 number of
tons of fuel, positive X2 number of tons of
solvent, positive O.F. S.T.
Material
1
Material 2
Material 3
IE 416, Chap 4, May 99
4RMC Inc. Problem, Standard LP Form
IE 416, Chap 4, May 99
5RMC Inc. Problem,Using Simplex Method
2 Ratio testing
1 Entering variable
Z X1 X2 S1 S2 S3 rhs
BV ratio 1 -40 -30 0 0
0 0 Z 0 2/5 1/2 1
0 0 20 S1 20/(2/5) 0 0
1/5 0 1 0 5 S2
-- 0 3/5 3/10 0 0 1
21 S3 21/(3/5)
4 Pivot term
3 Pivot row
First iteration
IE 416, Chap 4, May 99
6RMC Inc. Problem,Using Simplex Method, cont.
Z X1 X2 S1 S2 S3 rhs
BV ratio 1 0 -10 0 0
200/3 1400 Z 0 0 3/10 1 0
-2/3 6 S1 6/(3/10) 0 0
1/5 0 1 0 5
S2 5/(1/5) 0 1 1/2 0 0
5/3 35 X1 35/(1/2) Z X1
X2 S1 S2 S3 rhs BV
ratio 1 0 0 100/3 0 400/9
1600 Z 0 0 1 10/3 0
-20/9 20 X2 0 0 0 -2/3
1 4/9 1 S2 0
1 0 -5/3 0 25/9 25
X1
IE 416, Chap 4, May 99
7Excess and Artificial Variables
8Added Simplex Method Practical Variable
Application Application Slack
Equality of equation s gt 0 resource not
used BV for initial
s 0 binding constraint simplex
tableau Excess Equality of equation e gt
0 extra resource
required
e 0 binding constraint Artificial Added to gt
and No meaning
equations desire a 0
BV for initial a gt 0 no
solution simplex tableau
IE 416, Chap 41, Jan 99
9Simplex Method (maximization) Entering
Variable (most -ve in Row 0) Ratio Testing
smallest ratio,
ratio (rhs) / (coefficient gt 0) Pivot
Term (entering pivot row) ERO
(next iteration, new bfs) Optimum
Criterion (no -ve in Row 0) Different
problems Effect on simplex method min
O.F. initial bfs big M method row 0
version multi-optimal LP entering
variable unbounded LP ratio test infeasible
LP optimum tableau URS decision variable
IE 416, Chap 42, July 98