Title: PHYSICS 1: Solutions to: Classical Mechanics
1PHYSICS 1Solutions toClassical Mechanics
- Ronald L. Westra PhD
- Dept. Mathematics
- Maastricht University
21. STATICS
Q2 At what angle a will the object start to
slide down?
INCLINED PLANE
angle a
Answer When tan a f
31. STATICS
Q3 How large must F be such that the system is
in equilibrium?
F ?
B
armlength OB 1.5 m
A
armlength OA 1 m
FR (reaction force)
Fg (weight) m.g 100 N
angle a 30o
O
Here Fg 100 N, armlength OA 1 m ,
armlength OB 1.5 m, a 30 o
41. STATICS
Q3 How large must F be such that the system is
in equilibrium?
F ?
F2 F.cos a
B
armlength OB 1.5 m
A
armlength OA 1 m
F1 F sin a
FR (reaction force)
FR2
angle a 30o
Fg (weight) m.g 100 N
O
FR1
STEP 1 Select reference frame O as origin,
horizontalvertical coordinates STEP 2
decompose the forces STEP 3 static forces
X-axis FR1 (- F sin a) 0
1 static forces Y-axis FR2 F cos a -
Fg 0 2 STEP 4 static
torque relative to O F.OB FgOA.cos a 0
3 Three linear equations with three variables
(F, FR1, FR2) solvable!
5 Q3 How large must F be such that the system is
in equilibrium?
FR1 (- F sin a) 0
1 FR2 F cos a - Fg 0
2 F.OB FgOA.cos a 0 3 These
solve to FR1 Fg sin(2a)/3 ( 34.2 N) FR2
Fg (1 2cos²(a)/3) ( 35.3 N) F
2(Fgcos a)/3 ( 57.7 N) Notice that FR2/FR1
(2 - cos 2a)/sin 2a gt tan a, so the reaction
force FR does not point in the direction of arm
OB but above it!
62. KINEMATICS
Q4 Describe the motion of this object.
rain 0.01 kg/sec
FN (Normal force) 10 N
v 10 m/s
Ff (friction force) 0 N
Fg (weight) 10 N
7 Q4 Describe the motion of this object.
There is only change in the horizontal
coordinate as the mass slowly increases as
m(t) 1 0.01.t, (NB g 10 m/s²) and there
is no net force. Now apply Newtons second law
d(m(t)v(t))/dt 0 ? m(t)v(t) constant
m(0)v(0) 10 v(t) 10/(1 0.01.t)
82. KINEMATICS
Q5 Describe the motion of this object.
Ff (friction force) -0.1v
Fg (weight) 0.1 N
A rain drop falls freely under the force of
gravity. The force of air friction Ff is
directed opposite to the velocity of the droplet,
and has a size that is a constant (0.1 kg/sec)
times the magnitude of this velocity Ff
-0.1 v
9 Q5 Describe the motion of this object.
There is only movement in the vertical direction
choose there your axis. The force that act
are gravity (0.1N) and air friction (-0.1.v), so
the total force points downward (hence is
negative) and equals Ftot - 0.1 0.1.v.
Let g 10 m/s² and the initial velocity at t0
be 0 m/s. Now apply Newtons second
law d(m(t)v(t))/dt Ftot - 0.1 0.1.v ?
use some calculus v(t) -100
100exp(-0.1.t) So, after some time the rain
drop falls freely under the force of gravity
with a constant velocity of 100 m/s
10 Q5 Describe the motion of this object.
v(t) -100 100exp(-0.1.t)
112. KINEMATICS
Q6 Describe the motion of this object.
target
100 m
A ballista launches a rock with 50 m/s in a
uniform gravitational field with g -10 m/s2.
What is the safest angle a with the horizon
in order to hit a target at a distance of 100
m? And what information is (not) required?
12 Q6 Describe the motion of this object.
Fg (weight) 10 N g 10 m/s2
Here we have two independent movements Horizont
al Ftot 0, so d(mv1(t))/dt 0 ? v1(t)
constant v1(0) v cos a Vertical Ftot -10,
so d(mv2(t))/dt -10 ? v2(t) v2(0) 10t (v
sin a) 10t Therefore the vertical position z
is z(t) (v sin a)t 5t² . The bullet hits
the ground if z0, so when (v sin a)t 5t² 0,
i.e. at t0 (trivial, the start) and tmax (v
sin a)/5. The vertical position is then x(tmax)
(v cos a)tmax v² sin(2a)/10 250 sin(2a).
This must be equal to the position of the goal
100 m, so x(tmax) 250 sin(2a) 100 ? sin(2a)
0.4. This means that 2a 23.5782 or 2a 180 -
23.5782 156.4218. So a 11.7891 or a
78.2109. The smaller angle is better, for it
remains less long in the air and therefore is
more accurate.