Giampiero Mancinelli - PowerPoint PPT Presentation

About This Presentation
Title:

Giampiero Mancinelli

Description:

Wolfgang Menges, Queen Mary. Giampiero Mancinelli. University ... Low particle multiplicity (DD) = 6.4 nb (U(4S)gBB ~ 1 nb) Single tag sample. Mostly CF modes ... – PowerPoint PPT presentation

Number of Views:113
Avg rating:3.0/5.0
Slides: 26
Provided by: giampierom
Category:

less

Transcript and Presenter's Notes

Title: Giampiero Mancinelli


1
Experimental Prospects for CP and T Violation
Studies in Charm
  • Giampiero Mancinelli
  • University of Cincinnati
  • CHARM 2007 Cornell, USA

2
Outline
THE RESEARCH CP Violation in the Charm
Sector Direct CP Violation Experimental
Techniques CP/T Violation Searches Charged D
decays Neutral D decays CP states 3-Body CP
Violation at the ?(3770) T-odd Correlations Summa
ry Current Status Future Prospects Conclusions
THE PLAYERS
3
Charming CP Violation
  • Sakharov conditions for baryogenesis (1967)
  • Baryon number violation
  • CP violation
  • Non-equilibrium
  • SM CP Violation in kaon and beauty systems too
    small
  • Need other sources
  • Three types of CP Violation
  • CPV in mixing matrix (tiny)
  • CPV in decay amplitudes

See previous session for CPV in mixing
4
Direct CP Violation in Decay
  • Two amplitudes with different strong weak
    phases needed to observe CPV (in SM from tree and
    penguins)
  • THE DECAYS
  • Cabibbo Favored (CF)
  • Singly Cabibbo Suppressed (SCS)
  • Doubly Cabibbo Suppressed (DCS)

2 weak amplitudes with phase difference
strong phase difference
e.g. SCS D0 ? KK-
u
W
K
c
D0
s
K-
u
W
K
c
s
D0
s
Only SCS decays probe penguins
K-
5
CP Violation in the Standard Model
  • Standard Model charm physics is CP conserving
  • 2x2 Cabibbo quark mixing matrix is real (no CPV
    at tree level)
  • CPV in penguins and loops (by virtual b quarks)
  • Diluted weak phases in SCS decays
  • In mixing, CPV enters at O(VcbVub/VcsVus)
  • In decay, penguin CPV enters at
    O(VcbVub/VcsVusas/p)
  • No weak phases in CF and DCS decays
  • except D g K0p - SM 0.003 (CPV in K0 decay)
  • Note in general we can separate direct and
    indirect CP Violation by
  • Combine measured ACP with time-dependent CPV
    measurements (both for CP eigenstates)
  • Just using time-integrated measurements (assuming
    negligible new CPV in CF or DCS decays)
  • The time-integrated CP asymmetry for CF decay to
    a CP eigenstate gives indirect ACP
  • e.g ACP_DIRECT(PP-)
    ACP(PP-) - ACP(KS0p0) , P K, p

Light readings New physics and CP violation in
singly Cabibbo suppressed D decays. Y. Grossman,
A. L. Kagan, Y. Nir, Phys.Rev.D75036008,2007.
I Know She Invented Fire, But What Has She Done
Recently?" - On The Future Of Charm Physics, I.I.
Bigi, Int.J.Mod.Phys.A215404-5415,2006. Mixing
and CP-violation in charm. A. A. Petrov,
Nucl.Phys.Proc.Suppl.142333-339,2005. A
Cicerone for the Physics of Charm, S. Bianco, F.
L. Fabbri, D. Benson, I. Bigi, Riv. Nuovo Cim.
26N7 (2003) 1.
6
CP Violation and New Physics (NP)
  • Extensions of the Standard Model (ex SUSY)
    contain CP violating couplings that should show
    up at some level (1?) in flavor physics
  • Precision measurements and theory are required to
    detect the NP
  • BSM Physics charm is unique probe of the up type
    quark sector, especially models in which CKM
    mixing is generated in the up sector
  • top quarks do not hadronize
  • No T0-T0 oscillations
  • Hadronization helps observability of CP Violation
  • up quarks p0, ? and ?' do not decay weakly
  • No p0-p0 oscillations possible
  • CP asymmetries mostly excluded by CPT theorem)
  • (relatively) Large statistics
  • Flavor models where the CKM mixing is generated
    in the up sector predict large D - D mixing and
    sizable CPV in D, but smaller effects in the B
    sector
  • SCS D decays are now more sensitive to gluonic
    penguin amplitudes than are charmless B decays

CF and DCS decays Direct CPV in charm would
mean NP SCS decays SM 10-3 from CKM matrix
7
Experimental Approaches for DCPV
  • Measure asymmetry in time integrated partial
    widths
  • Measure asymmetries in final state distributions
    on Dalitz plots
  • Exploit quantum coherence of DD produced in
    y(3770) decays
  • Study T-violation in 4-body decays of D mesons
    (assuming CPT) with triple product correlations
    (T-odd)
  • All analyses (except CLEO-c) share many common
    features
  • Many D0s produced in colliders,
  • Easy to determine the flavor of the D0 (by
    unbiased tag D? g D0??)
  • Common backgrounds (e.g. Kp)
  • Random ? combining with a real D0gK?-
  • Multibody D0 decay from D?gD0??
  • Random K???combinatoral background
  • Signal and Background yields taken from mK??vs
    DM(D-D0)
  • Signal shape/resolution functions/efficiency
    calibrations taken from CF modes
  • p(D) cut to suppress from BgDgD decays

8
D ? K-Kp, p-pp
D ? K-Kp
D ? p-pp
CDFII
193 pb-1
42500 events 80fb-1
m(p-pp)
Phys. Rev. D71, 091101 (2005)
m2(p-p)
Large statistics gives access to detailed
features in Dalitz plots
m2(p-p)
http//www-cdf.fnal.gov/physics/new/bottom/040422.
dplus/
9
D0 g KK, pp - I
  • SM CPV10-3 in single Cabibbo suppressed modes
    (KK,pp), but null in Cabibbo allowed (Kp)
  • BR(D0-gtKK) gtgt BR(D0-gtpp) (R2.8) Large FSI
    and/or penguin contributions
  • NP CP asymmetries
  • Standard Model (Buccella et al, 1995) g KK (0.01
    0.08), pp (0.002 0.001)
  • CDF II
  • Use D0?Kp as normalization mode

D0?KK Yield 16220 ?200
D0?pp Yield 7334 ?97
Issues Tracking charge asymmetry partially
reconstructed D background for KK mode
Phys. Rev. Lett. 94, 122001 (2005)
10
D0 g KK, pp - II
  • BABAR
  • Analysis Difficulties
  • Precise quantification of asymmetry in D0 flavor
    tagging
  • Forward-backward asymmetries in cc production
    (novel issue)
  • Interference in e-e -gt cc as mediated by either
    a virtual photon or a virtual Z0.
  • Higher-order QED box- and Bremsstrahlung-diagram
    interference effects
  • Can produce asymmetries due to boost of the CMS
    relative to the lab at asymmetric BABAR
  • Data corrected for charge-dependent detection
    efficiencies
  • By tagging with an independent sample of D0
    decays
  • Systematics
  • All corrections used for data will be calculated
    from data.
  • Goal reduce systematics in these measurements to
    the 0.1 level
  • Soft-Pion Tagging efficiency corrections
    calculated from the CF decay (Kp)
  • With 400 fb-1 we expect

11
CLEO-cs Measurements
New!

At the ?(3770) Pure DD final state, no
additional particles Low particle
multiplicity (DD) 6.4 nb (U(4S)gBB 1
nb) Single tag sample Mostly CF modes High
efficiencies
281 pb-1
Uncertainties 1 most cases Charged Kaon
tracking largest syst. 0.7
SCS
12
Why Dalitz Plot Analyses?
  • In case of indirect CPV and final CP eigenstates
    the time integrated and time dependent CP
    asymmetries are
  • Universal
  • Equal to each other
  • In contrast, for direct CPV
  • The time-integrated asymmetries are not expected
    to be universal
  • Parts of phase-space might have different
    asymmetries
  • They may even cancel each other out when
    integrated over the whole phase-space
  • New Physics might not show up in the decay rates
    asymmetries
  • It could show up simply in the phase difference
    between amplitudes!

13
3-Body Dalitz Plot Analyses - I
  • 3-Body decays permit the measurement of phase
    differences
  • The Dalitz plot technique allows
  • Increased sensitivity to CP asymmetry
  • Probes the decay amplitude rather than the decay
    rate.
  • Access to both CP eigenstates (e.g. D0???0, f0?0,
    ?0?0, ) and non eigenstates (e.g. D0??-?-,
    K-K-, ) with relatively high statistics in
    the modes D0??-??0, D0?K-K?0,
  • As measurements are normalized to the whole phase
    space, the flavor dependence of ps tagging
    efficiency is null and the effect of mistagging
    is very small.
  • CLEO
  • D0??-??0 - Difference in the integrated coherent
    sum of all amplitudes across the Dalitz Plot
    between D0 and D0 events
  • D0gKS?-? - Full Dalitz analysis (see next slide)

14
3-Body Dalitz Plot Analyses - II
  • BABAR (expect results this Fall)
  • D0??-??0, D0?K-K?0
  • MODEL DEPENDENT approach fit D0 and D0 Dalitz
    plots separately, with a resonance (isobar) model
    (higher systematic uncertainties)
  • Parameterize the amplitude coefficients
    explicitly in the form

    A eid
    a ei(a ß) (1 b/a) (for D0)

  • A' eid' a ei(a - ß) (1 - b/a)
    (for D0)
  • Calculate b / a, ? values, asymmetries in
    the fit fractions for each isobar.
  • Follows CLEOs KSpp analysis technique,
    (Phys.Rev.D70091101,2004).
  • MODEL INDEPENDENT approach use moments of the
    cosine of the helicity angle for each of the
    three channels ( h-h, h-p0, h p0) plot vs
    invariant mass.
  • Measure asymmetry in these moments.
  • The phase/interference information is (mostly)
    contained in the odd moments
  • Decay rate asymmetry is contained in the even
    moments.

D0??-??0
D0??0p0 b0 b 0
m2(p-p)
MC
m2(p-p)
m2(p-p)
D0??0p0 b-0.05 b -5o
MC
m2(p-p)
15
?(3770) Quantum Correlation Analysis - I
  • At the ?(3770) (CLEO-c)
  • 22 double tagging efficiency (0.1 _at_ U(4S))
  • Same number of DD fully reconstructed as BB _at_
    U(4S)
  • Unique CPV search strategy
  • Complementary to other experiments

Pure JPC 1-- initial state g CP
Quantum Correlation Analysis (TQCA) Due to
quantum correlation between D0 and D0, not all
final states allowed.
If a D0 (tag) decays to a CP eigenstate f1, CP
conservation requires the recoiling state f2 to
have a definite CP as well, which must be of
opposite sign
16
?(3770) Quantum Correlation Analysis - II
New!
Improved technique KL CP modes
Reconstruct both D mesons (double tag)
CP CP
CP- CP-
CP CP-
K-p K-p
K-p K-p
K-p CP
CP K-p
X Kl-n
Forbidden by CP Conservation
281 pb-1
CP vs CP
CP- vs CP-
Maximal constructive interference
Forbidden (Bose Symm., if no D mixing
CP vs CP-
Interference Two paths to K-? vs K?-
K-? vs K-?
Interference of Cabibbo Favored with Doubly
Cabibbo Suppressed
K-? vs K?-
Unaffected
K? vs CP
K? vs CP-
Data favors QC interpretation constructive and
destructive interference and no D mixing
Data consistent with no C initial
state, (s1.5, stat dominated) hence no CPV
cosd 1.06 ? 0.19 ? 0.06
17
T Violation T-odd Correlations
Some references E. Golowich and G. Valencia,
Phys. Rev. D 40, 112 (1989) I.I. Bigi,
Proceedings of KAON2001, 417 (2001) () I.I.
Bigi, A.I. Sanda,CP Violation, Cambridge
University Press 2000
18
T-Violation Measurements
D0 ? KS0Kp-p
D0 ? K-Kp-p
Yield 828
FOCUS
FOCUS
19
Direct CP/T Violation Results D0 Decays
Experiment (year) Decay mode ACP () Comments
CDF (2005) D0 ? K K- 2.0 ? 1.2 ? 0.6
CLEO (2002) D0 ? K K- 0.0 ? 2.2 ? 0.8
FOCUS (2000) D0 ? K K- - 0.1 ? 2.2 ? 1.5
CDF (2005) D0 ? p p- 1.0 ? 1.3 ? 0.6
CLEO (2002) D0 ? p p- 1.9 ? 3.2 ? 0.8
FOCUS (2000) D0 ? p p- 4.8 ? 3.9 ? 2.5
CLEO (2001) D0 ? K0S K0S - 23 ? 19
CLEO (2001) D0 ? p0 p0 0.1 ? 4.8
CLEO (2001) D0 ? K0S p0 0.1 ? 1.3
CLEO (1995) D0 ? K0S f 2.8 ? 9.4
CLEO (2005) D0 ? p p- p0 1 (9-7) ? 5 Dalitz plot integr.
CLEO (2004) D0 ? K0S p p- - 0.9 ? 2.1 (1.6-5.7) Dalitz plot analysis
BELLE (2005) D0 ? K p p- p- - 1.8 ? 4.4 A of ratios DCS/CF
FOCUS (2005) D0 ? K K- p p- - 8.2 ? 5.6 ? 4.7
CLEO (2007) D0 ? K- p - 0.4 ? 0.5 ? 0.9
CLEO (2007) D0 ? K- p p0 0.2 ? 0.4 ? 0.8
CLEO (2007) D0 ? K- p p p 0.7 ? 0.5 ? 0.9
BELLE (2005) D0 ? K p- p0 - 0.6 ? 5.3 A of ratios DCS/CF
BABAR (2007) D0 ? K p- - 2.1 ? 5.2 ? 1.5 A of ratios DCS/CF
BELLE (2007) D0 ? K p- 2.3 ? 4.7 A of ratios DCS/CF
FOCUS (2005) D0 ? K K- p p- 1.0 ? 5.7 ? 3.7 T violation - TPCor
Partial list
New!
New!
20
Direct CP/T Violation Results D Decays
Experiment (year) Decay mode ACP () Comments
BABAR (2005) D ? K- K p 1.4 ? 1.0 ? 0.8 A of ratios SCS/CF
BABAR (2005) D ? f p 0.2 ? 1.5 ? 0.6 Resonant substructure of D ? K- K p
BABAR (2005) D ? K0 K 0.9 ? 1.7 ? 0.7 Resonant substructure of D ? K- K p
CLEO (2007) D ? K- K p - 0.1 ? 1.5 ? 0.8
FOCUS (2000) D ? K- K p 0.6 ? 1.1 ? 0.5 A of ratios SCS/CF
E791 (1997) D ? K- K p - 1.4 ? 2.9 A of ratios SCS/CF
E791 (1997) D ? f p - 2.8 ? 3.6 Resonant substructure of D ? K- K p
E791 (1997) D ? K0 K - 1.0 ? 5.0 Resonant substructure of D ? K- K p
FOCUS (2002) D ? K0S p - 1.6 ? 1.5 ? 0.9
CLEO (2007) D ? K0S p - 0.6 ? 1.0 ? 0.3
CLEO (2007) D ? K0S p p0 0.3 ? 0.9 ? 0.3
CLEO (2007) D ? K0S p p p- 0.1 ? 1.1 ? 0.6
CLEO (2007) D ? K- p p - 0.5 ? 0.4 ? 0.9
CLEO (2007) D ? K- p p p0 1.0 ? 0.9 ? 0.9
CLEO (2007) DS ? K h - 20 ? 18
CLEO (2007) DS ? K h - 17 ? 37
CLEO (2007) DS ? K0S p 27 ? 11
CLEO (2007) DS ? K p0 2 ? 29
E791 (1997) D ? p p- p - 1.7 ? 4.2 A of ratios SCS/CF
FOCUS (2005) D ? K0S K p p- 2.3 ? 6.2 ? 2.2 T violation through triple product correlations
FOCUS (2005) DS ? K0S K p p- - 3.6 ? 6.7 ? 2.3 T violation through triple product correlations
New!
New!
Partial list
21
Average Result, by Mode
Decay mode ACP ()
D0 ? K K? 1.4 1.2
D0 ? KS0 KS0 ? 2.3 1.9
D0 ? ? ?? 1.3 1.3
D0 ? ?0 ?0 0.1 4.8
D0 ? ? ?? ?0 1 9
D0 ? KS? ?0 0.1 1.3
D0 ? K? ? - 0.4 1.0
D0 ? K? ? ?0 0.2 0.9
D0 ? K? ? ? ?- 0.7 1.0
D0 ? K ?? ? 0.8 3.1
D0 ? K ?? ?0 ? 0.1 5.2
D0 ? KS? ? ?? ? 0.9 4.2
D0 ? K ?? ? ?? ? 1.8 4.4
D0 ? K K? ? ?? ? 8.2 7.3
D ? KS? ? ? 0.9 0.9
D ? KS? p p0 0.3 0.9
D ? KS? p p p- 0.1 ? 1.3
Decay mode ACP ()
D ? K- p p - 0.5 ? 1.0
D ? K- p p p0 1.0 ? 1.3
D ? KS? K 7.1 6.2
D ? K K? ? 0.6 0.8
D ? ? ?? ? ? 1.7 4.2
D ? KS? K ? ?? ? 4.2 6.8
HFAG my averages
Partial list
AT
For most references
http//hal9000.mib.infn.it/pedrini/hfag/charm_asy
mcp.html See the HFAG pages
http//hal9000.mib.infn.it/pedrini/hfag/charm_tod
d_asym.html
22
Future Prospects Current Efforts - I
  • D0gKK, pp
  • CDF yield prospects
  • 2M D tagged D0?Kp per 1 fb-1
  • s(ACP) 10-3 is achievable with full Tevatron
    run (4-9 fb-1) - at SM limit
  • Issue will be if trigger can cope with Luminosity
    increase
  • BABAR 1 ab-1
  • KK s(A)0.2 (stat)
  • pp s(A)0.3 (stat)
  • D g KK-p
  • BABAR now s(A)0.45 (systematically dominated
    (syst0.8))
  • 1 ab-1 s(A)0.28 (stat)
  • Dalitz Analysis fit fractions and phase
    differences 1 and 1o precisions
  • D0gpp-p0 Dalitz Analysis

23
Future Prospects Current Efforts - II
  • T-Odd Correlations
  • BABAR (KKpp)
  • now 0.9-0.6 level (if systematics under
    control)
  • 1 ab-1 0.55-0.35
  • Relevant datasets I am aware of (larger
    backgrounds than KKpp)
  • CLEO D0gpp-pp- 7,300 - D0gpp-p0p0 2,700
    Dgpp-pp0 5,700
  • BABAR D0gpp-pp- - current 140,000 1 ab-1
    320,000
  • many large CF decays datasets from all 3
    experiments
  • NOTE Expect similar yields/results from BELLE

24
Future Prospects Future Efforts
  • BEPCII/BESIII
  • Data taking beginning of 2008 - 3 yrs _at_ 3770
    30M DD/yr 90M DD 20 times full CLEO-c
    dataset
  • Super-B (D, t)
  • 10 ab-1/yr at U(4S)
  • With option to lower energy to 4 GeV (1ab-1/yr)
  • LHCb
  • Will implement a dedicated D trigger stream
    selecting huge and clean samples of hadronic D
    modes
  • In one year of running at nominal lumi (21032
    cm-2s-1)
  • Expect 250 - 500 M D ? D0p decays with D0?Kp
    channel 100 times CDF !

BESIII SUPER-D-too Factory (KEK and/or
Frascati) LHCb
  • K-K
  • A lt 0.08 (CLEO-c), lt 0.004 (BESIII)
  • s(A) 1 x 10-4 (stat.) LHCb/yr
  • s(A) 6 x 10-5 (stat.) Super-B/yr
  • y(3770) Quantum Correlation Analysis
  • A lt 0.025 (CLEO-c)
  • s(A) 0.01 (just KK, pp) (BESIII)
  • s(A) 7x 10-4 (stat.) Super-B/yr
  • KSp-p Dalitz analysis
  • Super-B (5 years 50 ab-1) A lt 5 10-4

25
Conclusions
  • Charm physics provides unique opportunities for
    indirect search of NP
  • Theoretical calculation of x, y have large
    uncertainties
  • Physics BSM hard to rule out from D0 mixing
    measurements alone
  • Observation of (large) CPV g robust NP signal
  • SCS D decays now more sensitive to gluonic
    penguin amplitudes than charmless B decays

Exciting new results (CLEO, Belle, BABAR)
Total errors 1 level BUT far from
observation Now entering the interesting
domain Promising future Current experiment
0.1-0.3 in the best modes
Future efforts (Super-Bs, LHCb, BESIII)
0.001-0.01
Write a Comment
User Comments (0)
About PowerShow.com