Modeling Cycles By ARMA - PowerPoint PPT Presentation

About This Presentation
Title:

Modeling Cycles By ARMA

Description:

Data =Trend Season Cycle Irregular. Cycle Irregular = Data Trend Season ... For this presentation, let: Yt = Cyclet Irregulart. Stationary Process ... – PowerPoint PPT presentation

Number of Views:205
Avg rating:3.0/5.0
Slides: 26
Provided by: hirokun
Category:
Tags: arma | cycles | modeling | season

less

Transcript and Presenter's Notes

Title: Modeling Cycles By ARMA


1
Modeling Cycles By ARMA
  • Specification
  • Identification (Pre-fit)
  • Testing (Post-fit)
  • Forecasting

2
Definitions
  • Data Trend SeasonCycle Irregular
  • Cycle Irregular Data Trend Season
    (curves) (dummy variables)
  • For this presentation, let
  • Yt Cyclet Irregulart

3
Stationary Process For Cycles
Cycle Irregular (A) Stationary Process
(A) ARMA(p, q)
(A) Approximation
4
Stationary Process
  • Series Yt is stationary if mt m, constant
    for all t
  • st s, constant for all t
  • r(Yt, Yth) rh does not depend on t
  • WN is a special example of a stationary process

5
Models For a Stationary Process
  • Autoregressive Process, AR(p)
  • Moving Average Process, MA(q)
  • Autoregressive Moving Average Process, ARMA(p, q)

6
Parameters of ARMA Models
  • Specification Parameters
  • fk Autoregressive Process Parameter
  • qk Moving Average Process Parameter
  • Characterization Parameters
  • rk Autocorrelation Coefficient
  • fkk Partial Autocorrelation Coefficient

7
AR Process
  • AR (1) (Yt - m ) f1 (Y(t-1) - m ) e
    t
  • -1 lt f1 lt 1
  • (stationarity condition)
  • AR (2) (Yt - m) f1 (Y(t-1) - m) f2
    (Y(t-2) - m ) e t
  • f2 f1 lt 1, f2 - f1 lt 1 , -1 lt f2 lt 1
  • (stationarity condition)
  • e t is a WN (s)

8
MA Process
  • MA (1) Yt - m et q 1 e(t-1)
  • - 1 lt q 1 lt 1
  • (invertibility condition)
  • MA (2) Yt - m et q 1 e (t-1) q2 e
    (t-2)
  • q2 q1 gt-1, q2 - q1 gt- 1 ,
    -1 lt q2 lt 1
  • (invertibility condition)
  • e t is a WN (s)

9
ARMA (p, q) Models
  • ARMA(1, 1)
  • (Yt - m ) f1 (Y(t-1) - m ) e t q 1
    e(t-1)
  • ARMA(2, 1)
  • (Yt - m ) f1 (Y(t-1) - m ) f2 (Y(t-2) -
    m ) e t q 1 e(t-1)
  • ARMA(1, 2)
  • (Yt - m ) f1 (Y(t-1) - m ) e t q 1
    e(t-1) q 2 e(t-2)

10
Wold Theorem
  • Any stationary process can be defined as a
    linear combination of a WN series, et
  • means
  • with sum( ) lt inf.

11
Lag Operator, L
  • Lag Operator, L
  • Then, the Wold Theorem can be written as

12
Approximation
  • Approximation of B(L) by a Simple Rational
    Polynomial of L

13
Generating AR(1)
  • Let

14
Generating MA(1)
  • Let

15
Generating ARMA(1,1)
  • Your Exercise

16
AR, MA or ARMA?Pre-Fitting Model Identification
  • Using ACF and PACF

17
Partial Autocorrelation FunctionPACF
  • Notation
  • The partial autocorrelation of order k is denoted
    as
  • f kk
  • Interpretation
  • f kk Correlation (Yt, Y(t-k) Y(t-1) ,...,
    Y(t-k1) )
  • Yt, Y(t-1), Y(t-2), ... , Y(t-k1), Y(t-k)

18
Patterns of ACF and PACF
  • AR processes
  • MA processes
  • ARMA processes

19
Model Diagnostics Post Fit
  • Residual Check
  • Correlogram of the Residual
  • QLB Statistic (m - of parameters)
  • SE
  • Test of Significance of Coefficients
  • AIC, SIC

20
AIC and SIC
(Maximized)
(Minimized)
21
Truth is Simple
  • Parsimony
  • Use a minimum number of unknown parameters

22
Importance of Parsimony
  • In-Sample RMSE (SE) of Model Prediction
  • vs.
  • B. Out-of-Sample RMSE
  • The two should not differ much.

23
Eview Commands
  • AR
  • ls series_name c ar(1) ar(2)..
  • MA
  • ls series_name c ma(1) ma(2)..
  • ARMA
  • ls series_name c ar(1) ar(2).ma(1) ma(2).

24
Forecasting Rules
  • Sample range 1 to T. Forecast Th for h1,2,
  • Write the model, with all unknown parameters
    replaced by their estimates.
  • Write the information set WT (only necessary
    part)
  • The unknown errors are given 0.
  • Use the chain rule.

25
Interval Forecast
  • h1
  • Use SE of Regression for setting the upper and
    the lower limits
  • h2
  • a) AR(1)
  • b) MA(1)
  • c) ARMA(1,1)
Write a Comment
User Comments (0)
About PowerShow.com