Title: S. Haddad
1Interplay between SDW and superconductivity in
the quasi-one organic superconductor (TMTSF)2ClO4
- S. Haddad
- LPMC, Département de Physique, Faculté des
Sciences de Tunis, Tunisia - S. Charfi-Kaddour
- LPMC, Faculté des Sciences de Tunis, Tunisia
- M. Héritier
- LPS, Orsay, (unité mixte de Recherche) CNRS-Paris
XI, France - R. Bennaceur
- LPMC, Faculté des Sciences de Tunis, Tunisia
2- Acknowledgments
- Theory Experiments
- C. Bourbonnais (Sherbrooke) D. Jérome (Orsay)
- A. G. Lebed (Arizona) Y. Maeno (Kyoto)
- N. Joo (Orsay)
3- Why quasi-one organic superconductors?
- (TMTSF)2ClO4 an exotic organic conductor
- Effect of disorder on the interplay between
Superconductivity and SDW - Effect of a magnetic field new field induced SDW
(FISDW) phases
4Why superconductors ?
Uses for superconductors
- Also as
- Electric generator (99 more efficient than
ordinary one) - SQUID (Superconducting Quantum Interference
Device) sensing weak magnetic field - Military antenna and in detecting mines (US
NAVY)
5The future of Superconductors
6Why organic superconductors ?
Dream towards room temperature superconductors
!!!
Problems difficulties to synthesize such
materials until
7Why organic superconductors ?
- 1979 discovery of organic superconductivity in a
quasi-one dimensional salt (TMTSF)2PF6 (D.
Jéromes group) - then in Bechgaard salts denoted by (TMTSF)2X
(XPF6-, ClO4-)
But there are still open questions !!!
Interplay between SC/ SDW coexistence or
competition?
8Crystal structure of (TMTSF)2X
9Key parameters of (TMTSF)2X
10 Phase diagram of Bechgaard salts
11 (TMTSF)2ClO4 What makes it so special ?
ClO4 anions are noncentrosymmetric
12 (TMTSF)2ClO4 anion ordering
Slowly cooled sample (relaxed) ClO4 anions
order along b direction at TAO 24 K
13(No Transcript)
14 Effect of cooling rate
relaxed samples (slowly cooled)
Superconducting (SC)
For the intermediate cooling rate both SC and
magnetism.
In the quenched samples pure magnetic state
(SDW)
15 effect of cooling rate generic phase diagram
T
metal
TSDW
Pure SDW
TSC
SC/ SDW
Pure SC
Cooling rate
16Model Interplay of superconductivity and
magnetic phases
Bands separated by gap Eg
17Method perturbative renormalization group theory
(Bourbonnais et al.)
SDW
CDW
singlet superconductivity (SSc)
triplet superconductivity(tSc)
18Scattering processes (g-ology model)
g(1) processes
g(2) processes
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
19Scaling flows of the most divergent
tb 300 K, EF 2000 K, Tcross 170 K,
0.6
Coexisting singlet SC/SDW
Singlet SC
Pure SDW
20Phase diagram
Limits RG calculations Is there coexistence
or segregation between SC and SDW ?
21Experiments
Phase segregation !
Next step compare free energies (pure SC, pure
SDW, SCSDW)
22Effect of a transverse magnetic field
23(No Transcript)
24Other puzzle Effect of a high magnetic field
Generic Temperature field phase diagram in the
absence of anion ordering
10
8
metal
6
Temperature (K)
4
N0
2
N1
2
3
5
10
15
20
25
Magnetic field (T)
Cascade of FISDW phases already explained
within the Quantized nesting model (Lebed,
Gorkov, Maki, Héritier, Montambaux, Lederer).
SDW phase inside an original SDW state !!!
25High field phases correspond lowest N values
10
8
metal
6
Temperature (K)
4
N0
2
N1
2
3
5
10
15
20
25
Magnetic field (T)
26(No Transcript)
27(No Transcript)
28Instability criteria
MFT RG
N1 FISDW phase standard Stoner Criterion
29ThermodynamicsCompetition between the N0 and
the N1 phase
30Temperature-field phase diagram
31Effect of a parallel magnetic field
32(No Transcript)
33Quantum mechanical calculation
Layer index
34Other models in competition with our !!!
Probability in transverse direction
A. G. Lebed, Phys. Rev. Lett. (2005)
Index layer
But, does not explain the resistance behavior
35What should be next ?
- symmetry of the gap in (TMTSF)2ClO4? triplet
or singlet ? - Interplay between Superconductivity and SDW
coexistence or competition ?
-
References -
- N. Matsunaga et al. J. Low Temp. Phys. 117, 1735
(1999) - J. Greer et al. Physica C 400, 59 (2003)
- N. Joo et al., cond-mat/0507641
- S. K. McKernan et al., P.R.L 75, 1630 (1995)
- O. H. Chung et al., P.R.B 61, 11649 (2000)
- J. Moser, Ph. D. thesis, Orsay (France) (1999)
(unpublished) - C. Bourbonnais and L. G. Caron, Int. J. Mod.
Phys. B, 5, 1033 (1991) - J. Kishine and K. Yonemitsu, J. Phys. Soc. Jpn.
67, 1714 (1998) - T. Osada et al. P.R.L. 77, 5261 (1996)
- S. Uji et al., P.R.B 53, 14399 (1996)
- H. Yoshino et al., Synth. Met. 133-134, 55 (2003)
- H. I. Ha et al., cond-mat/0503649
- G. Lebed et al., P.R.L. 93, 157006 (2004)
- A.G. Lebed and P. Bak, P.R.B 40, R11433 (1989)
- T. Osada et al., P.R.L. 69, 1117 (1992)
- S. Haddad et al., P.R.B 72, 085104 (2005)